共查询到19条相似文献,搜索用时 62 毫秒
1.
基于串联灰色神经网络的电力负荷预测方法 总被引:12,自引:0,他引:12
为了提高电力负荷预测的精度,分析现有人工神经网络和灰色预测方法各自的优缺点,将二者相结合提出了一种串联灰色神经网络预测方法.新方法利用灰色预测中的累加生成运算对原始数据进行变换,从而得到规律性较强的累加数据,便于神经网络进行建模和训练,同时避免了灰色预测方法存在的理论误差.最后实际算例证明了方法的有效性.方法适用于中长期负荷预测. 相似文献
2.
3.
一种基于粗糙集理论的SVM短期负荷预测方法 总被引:14,自引:1,他引:14
在分析粗糙集理论方法与支持向量机方法的优势和互补性后,探讨了粗糙集与支持向量机的结合方法,提出了一种基于粗糙集数据预处理的支持向量机预测系统。该系统利用粗糙集理论在处理大数据量、消除冗余信息等方面的优势,减少支持向量机的训练数据,克服支持向量机方法因为数据量太大,处理速度慢等缺点。将该系统应用于短期负荷预测中,与BP神经网络法和标准的支持向量机方法相比,得到了较高的预测精度,从而说明了基于粗糙集理论方法作为信息预处理的支持向量机学习系统的优越性。 相似文献
4.
支持向量机对分类问题的求解过程相当于解一个线性约束的二次规划问题,求解的变量个数与训练样本数相等,且需要计算和存储的核矩阵大小与训练样本数的平方相关.随着样本数目的增多,经典的求解二次规划问题的算法不再适用.针对大规模二分类问题,基于数据分割和集成学习策略,本文提出了一种快速支持向量机学习算法.其主要思想是:首先对数据集进行预处理,自动将正负类分别聚成若干子簇;然后对两两组合的正负子簇用SMO算法进行交叉学习,得到多个基本分类器;最后对这些基本分类器进行集成学习.在UCI的5个数据集上的实验表明,与SMO学习算法相比,这种基于数据分割的训练策略在精度几乎没有损失的情况下显著地提高了训练速度. 相似文献
5.
基于SVM 的柔性生产模式下生产过程质量智能预测 总被引:1,自引:2,他引:1
提出了一种基于支持向量机(SVM)的柔性生产模式下生产过程质量智能预测方法.该方法基于结构风险最小化, 能较好地解决小样本学习问题,避免了人工神经网络等智能方法在训练时所表现出来的过学习、泛化能力弱等缺点.实验表明: 该方法具有预测精度高、速度快、容易实现等优点,为柔性生产模式下的生产过程质量预测提供了一种切实有效的方法. 相似文献
6.
SVM方法及其在客户流失预测中的应用研究 总被引:8,自引:1,他引:8
客户流失分析与预测是客户关系管理的重要内容.针对客户流失问题,建立了支持向量机预测模型.针对实际客户流失数据中正负样本数量不平衡而且数据量大的特点,提出带有不同类权重参数的支持向量机算法CW-SVM,通过调整类权重参数改变分类面位置,提高算法分类准确性;将标准支持向量机训练问题转化为运算效率更高的核向量机问题,提出处理不平衡海量数据集的CWC-SVM算法.通过实际银行信贷客户数据集测试,该算法与传统预测算法比较,更适合解决大数据集和不平衡数据,取得较好的客户流失预测效果. 相似文献
7.
矿井突(涌)水水源的快速识别是矿井水害有效防治的前提条件.为了更有效地区分潘三煤矿B8、C13组煤系突水水源, 利用支持向量机(SVM)建立水源判别模型,并将其与模式识别领域发展比较成熟的BP神经网络判别模型对比,发现SVM法能够将煤系B8、C13组混和水源快速、有效地分开.研究结果表明: SVM法的分类函数结构简单,运算速度快,解决了在BP神经网络方法中无法避免的局部极值问题,对于B8、C13组煤系突水水源的区分有更好的适用性和优越性,为矿井水害防治提供了一种辅助决策手段. 相似文献
8.
基于SVM和PSO算法的飞机部件DMC预计方法 总被引:1,自引:0,他引:1
控制维修成本是飞机研制中的一项重要任务,而部件直接维修成本(DMC)的预计是控制过程中的关键步骤。鉴于现有的预计方法精度不高、波动性大或可操作性不强,引入了支持向量机(SVM)理论对不同单一模型进行非线性组合,并改进了粒子群优化(PSO)算法用于同时求解离散变量和连续变量,达到了模型选择和SVM参数的联合优化。实验证明,该预计方法算法简单、速度快,并且比以往的方法在精度和稳定性上都有显著提高。 相似文献
9.
基于灰色相关向量机的故障预测模型 总被引:2,自引:0,他引:2
针对样本数据量较小条件下的故障预测问题,提出了一种灰色相关向量机(relevance vector machine, RVM)故障预测模型。在模型的训练阶段,根据特征数据序列建立其离散灰色模型(discrete grey model, DGM),以DGM的预测值作为输入、原始数据序列作为输出,训练得到RVM回归预测模型;在模型的预测阶段,由建立的DGM和RVM回归预测模型组合得到灰色RVM故障预测模型,并通过引入新陈代谢过程,不断更新数据中的信息。实验结果表明,模型的预测性能优于传统的灰色预测模型。 相似文献
10.
峰值识别的SVM模型及在时用水量预测中的应用 总被引:6,自引:0,他引:6
提出了一种峰值识别理论及相应改进的SVM模型.该模型在结构风险最小化准则的目标函数中加大峰值误差的权重,并结合杭州市时用水量预测实践结果,其能很大提高对峰值用水量的预测精度.模型还把时用水量序列分为参数优化集和训练预测集,以对参数C、γ优化选取. 相似文献
11.
在选矿生产中为了达到规定的目录,选矿工程师需要根据原矿的情况给各生产工序下达合理的生产作务,但由于选矿生产具有大滞后的特点,在选矿工程师决策下达执行前,如果能够对最终的生产结果进行预测则具有重要意义.以某选矿厂为实际背景,在分析了指标之间关系的基础上,采用加权支持向量机建立了相关指标的预报模型,并通过构造重要性函数的方法确定了支持向量机加权系数,最后利用该厂历史数据进行了传真实验 相似文献
12.
一种基于支持向量机的模糊分类器 总被引:2,自引:0,他引:2
提出了一种基于支持向量机学习的模糊分类器(FCBSVM).介绍了FCBSVM的基本思想及其结构,分析了隶属函数参数和惩罚参数C对分类规则的产生以及分类性能的影响,并提出了参数确定方法.构建这种分类器时,先选用适当的隶属函数,构造核函数.然后,以训练模式作为中心,进行模糊划分,对每个模糊划分建立一条模糊IF-THEN分类规则.最后,利用支持向量机学习方法,求出支持向量和规则的参数.这种分类器将支持向量机和模糊集合理论的优点结合起来,实现了模糊划分和模糊分类规则的自动产生.用双螺旋线数据和典型的数据集对分类器的性能进行了实验评测,验证了分类器的有效性. 相似文献
13.
14.
为了在重力异常特征微弱区域内实现重力辅助导航以及提高惯性导航系统在重力异常特征明显区域内的定位精度和匹配率,提出了基于支持向量机的重力匹配算法.研究了支持向量机学习样本的选取、支持向量机参数和重力粗糙度的关系,构造了用于重力匹配算法的支持向量机.经计算仿真研究表明,通过选择适当的支持向量机参数,可以实现重力辅助导航,算法在重力特征显著的区域具有较高的匹配率,组合导航系统的定位误差在一个重力图网格左右. 相似文献
15.
16.
17.
在由工业CT图像构成的体数据中,低密度材质的灰度与背景及伪影的灰度接近,影响了分类的准确性,进而影响体绘制的结果.针对这一问题,提出了一种基于支持向量机的体数据分类算法.首先以体素的灰度、梯度、局部直方图的熵和矩为样本特征进行训练,得到决策函数,并通过决策函数对体数据进行类别标记,再将具有相同标记的体素的灰度值变换到指定的灰度区间,最后利用阻光度传递函数对体素进行阻光度赋值,完成体数据的分类.实验结果表明,所提出的算法较好的实现了体数据的分类,体绘制结果清晰,且能够实现试件的模拟拆卸. 相似文献
18.
19.
分析了点云建模的特点,将基于统计学习理论的支持向量机引入该领域。首先提取点云数据中的强特征,采用支持向量回归机构建轮廓;然后在轮廓形成的不同区域分别提取弱特征,用回归的方式逐步重构区域纹理,从而得到整个物体的表面表达。理论分析和实验结果表明该方法的精度和处理速度优于人工神经网络,具有一定的实用性,为点云建模研究提供了一种新的思路。 相似文献