共查询到17条相似文献,搜索用时 93 毫秒
1.
该文运用了格林公式的性质和锥上不动点定理,建立了一个广义二阶常微分方程三点积分边值问题在超线性和次线性条件下至少有一个正解的存在性定理.同时给出了在这一边值条件下至少有两个正解存在的充分条件. 相似文献
2.
研究一类具有积分边界条件的二阶非线性常微分方程非局部边值问题多个正解的存在性.利用双锥上不动点定理,在允许非线性项变号的情况下,得到了边值问题至少存在两个正解的充分条件. 相似文献
3.
二阶常微分方程组边值问题正解的存在性 总被引:1,自引:1,他引:0
利用锥上不动点定理,研究了一类二阶非线性常微分方程组四点边值问题正解的存在性.在非线性项满足一定增长的条件下,得到了至少一个和两个正解存在的几个充分条件. 相似文献
4.
研究非线性四阶微分方程两点积分边值问题解的存在性.利用一些分析技巧及锥上不动点定理,给出该问题存在一个及两个正解的充分条件. 相似文献
5.
用不动点指数理论,在与相应的线性算子第一特征值相关的条件下,考虑一类分数阶微分方程积分边值问题,得到了该积分边值问题至少存在一个正解的结果,并给出一个实例说明定理的适用性. 相似文献
6.
7.
8.
王翔 《安庆师范学院学报(自然科学版)》2014,(3):17-21
研究了一类四阶积分边值问题正解的存在性问题,利用锥上不动点定理,建立了该问题在超线性和次线性条件下存在一个及两个正解的充分条件。 相似文献
9.
利用锥压缩锥拉伸不动点定理及一些分析技巧,建立一类四阶非线性微分方程的积分边值问题存在一个及多个正解的充分条件,推广和改进ZHANG Xue-mei等人的研究结果. 相似文献
10.
运用Krasnoselskii不动点定理研究具有积分边值条件的二阶微分方程组问题, 得到了该问题正解的存在性及多解的存在性. 相似文献
11.
研究了一类二阶非线性常微分方程三点边值问题的正解的存在性定理,利用Krasnosel’skii不动点定理证明了当二阶非线性常微分方程三点边值问题的非线性项同是超线性时,或同是次线性时,或其中一个为超线性一个为次线性时,方程至少存在一个正解的结论.改进和推广了以往非线性项只是超线性或只是次线性时非线性三点边值问题的正解的存在性结论.所讨论的方程具有更一般的形式. 相似文献
12.
李耀红 《吉林大学学报(理学版)》2015,53(1):21-26
利用锥拉伸和压缩不动点定理研究一类非线性分数阶微分方程积分边值问题,获得了其相应的格林函数及正解的存在性条件,并给出了应用实例. 相似文献
13.
聂高辉 《江西师范大学学报(自然科学版)》2005,29(6):541-543
利用锥上的Krasnosel’skii不动点定理,在不满足次线性和超线性的情形下,研究了一类奇异非线性特征值问题,得到了该问题的一个正解的存在定理. 相似文献
14.
研究一类四阶奇异非线性积分边值问题正解的存在性问题. 利用锥压缩锥拉伸不动点定理及一些分析技巧,建立该边值问题存在一个及多个正解的一些新结果.所得结果推广并改进了先前的相关结果. 相似文献
15.
16.
应用Lerary-Schauder原理研究一类二阶奇异边值问题,在满足一定条件下,至少存在一个正解y,y∈C[0,1]∩C2(0,1)且py′∈C[0,1],f(t,y,py′)在y=0,t=0或t=1处有奇性。 相似文献
17.
郭建敏 《山西大同大学学报(自然科学版)》2008,24(1):12-15
利用关于锥拉伸锥压缩的Krasnoselskii不动点定理,讨论了非线性奇异三阶两点边值问题{u^m(t)+λa(t)f(u(t))=0,0〈t〈1 u(1)=u′(1)=u″(0)=0正解的存在性,得到上述边值问题至少存在两个正解的λ的区间,其中λ是一个正常数。 相似文献