首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Larval stages of a living sea lily (stalked crinoid echinoderm)   总被引:2,自引:0,他引:2  
Nakano H  Hibino T  Oji T  Hara Y  Amemiya S 《Nature》2003,421(6919):158-160
The embryos and larvae of stalked crinoids, which are considered the most basal group of extant echinoderms, have not previously been described. In contrast, much is known about the development of the more accessible stalkless crinoids (feather stars), which are phylogenetically derived from stalked forms. Here we describe the development of a sea lily from fertilization to larval settlement. There are two successive larval stages: the first is a non-feeding auricularia stage with partly longitudinal ciliary bands (similar to the auricularia and bipinnaria larvae of holothurian and asteroid echinoderms, respectively); the second is a doliolaria larva with circumferential ciliary bands (similar to the earliest larval stage of stalkless crinoids). We suggest that a dipleurula-type larva is primitive for echinoderms and is the starting point for the evolution of additional larval forms within the phylum. From a wider evolutionary viewpoint, the demonstration that the most basal kind of echinoderm larva is a dipleurula is consistent with Garstang's auricularia theory for the phylogenetic origin of the chordate neural tube.  相似文献   

2.
Deuterostomes comprise vertebrates, the related invertebrate chordates (tunicates and cephalochordates) and three other invertebrate taxa: hemichordates, echinoderms and Xenoturbella. The relationships between invertebrate and vertebrate deuterostomes are clearly important for understanding our own distant origins. Recent phylogenetic studies of chordate classes and a sea urchin have indicated that urochordates might be the closest invertebrate sister group of vertebrates, rather than cephalochordates, as traditionally believed. More remarkable is the suggestion that cephalochordates are closer to echinoderms than to vertebrates and urochordates, meaning that chordates are paraphyletic. To study the relationships among all deuterostome groups, we have assembled an alignment of more than 35,000 homologous amino acids, including new data from a hemichordate, starfish and Xenoturbella. We have also sequenced the mitochondrial genome of Xenoturbella. We support the clades Olfactores (urochordates and vertebrates) and Ambulacraria (hemichordates and echinoderms). Analyses using our new data, however, do not support a cephalochordate and echinoderm grouping and we conclude that chordates are monophyletic. Finally, nuclear and mitochondrial data place Xenoturbella as the sister group of the two ambulacrarian phyla. As such, Xenoturbella is shown to be an independent phylum, Xenoturbellida, bringing the number of living deuterostome phyla to four.  相似文献   

3.
Origin of a gene regulatory mechanism in the evolution of echinoderms   总被引:1,自引:0,他引:1  
A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionarily highly conserved alpha-subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal alpha-subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe alpha-subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of alpha-histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time approximately 190-200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.  相似文献   

4.
The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as 'metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z?相似文献   

5.
The ages of the oldest stars in the Galaxy indicate when star formation began, and provide a minimum age for the Universe. Radioactive dating of meteoritic material and stars relies on comparing the present abundance ratios of radioactive and stable nuclear species to the theoretically predicted ratios of their production. The radioisotope 232Th (half-life 14 Gyr) has been used to date Galactic stars, but it decays by only a factor of two over the lifetime of the Universe. 238U (half-life 4.5 Gyr) is in principle a more precise age indicator, but even its strongest spectral line, from singly ionized uranium at a wavelength of 385.957 nm, has previously not been detected in stars. Here we report a measurement of this line in the very metal-poor star CS31082-001, a star which is strongly overabundant in its heavy elements. The derived uranium abundance, log(U/H) = -13.7 +/- 0.14 +/- 0.12 yields an age of 12.5 +/- 3 Gyr, though this is still model dependent. The observation of this cosmochronometer gives the most direct age determination of the Galaxy. Also, with improved theoretical and laboratory data, it will provide a highly precise lower limit to the age of the Universe.  相似文献   

6.
利用星风吸积模型,计算了钡星的初始质量和AGB伴星的金属丰度对弱钡星和强钡星超丰因子的影响,计算了弱钡星和强钡星重元素(Y,Nd)丰度随轨道周期终值的变化,并和观测值作了比较.由此得出结论:强钡星和弱钡星的区别主要是金属丰度不同(即年代不同),而不是轨道距离;弱钡星和强钡星相比,属于较年轻、质量较大、金属丰度较丰富的星族;这就意味,s-元素的核合成在低金属丰度星族更有效产生.  相似文献   

7.
More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to reflex motions of their host stars, and more recently through transits of some planets across the faces of the host stars. The detection of planets with the shortest known periods, 1.2-2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M(o), where M(o) is the mass of the Sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of masses in the range 0.44-0.75 M(o). In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets, which occur only around stars of less than 0.88 M(o). This indicates that those orbiting very close to more-luminous stars might be evaporatively destroyed or that jovian planets around stars of lower mass might migrate to smaller radii.  相似文献   

8.
Bromm V  Loeb A 《Nature》2003,425(6960):812-814
The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation, accompanied by cooling of the primordial gas via molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass it undergoes a slow, quasi-hydrostatic contraction without further fragmentation; lower-mass stars cannot form. Here we show that as soon as the primordial gas--left over from the Big Bang--is enriched by elements ejected from supernovae to a carbon or oxygen abundance as small as approximately 0.01-0.1 per cent of that found in the Sun, cooling by singly ionized carbon or neutral oxygen can lead to the formation of low-mass stars by allowing cloud fragmentation to smaller clumps. This mechanism naturally accommodates the recent discovery of solar-mass stars with unusually low iron abundances (10(-5.3) solar) but with relatively high (10(-1.3) solar) carbon abundance. The critical abundances that we derive can be used to identify those metal-poor stars in our Galaxy with elemental patterns imprinted by the first supernovae. We also find that the minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background.  相似文献   

9.
Figer DF 《Nature》2005,434(7030):192-194
There is no accepted upper mass limit for stars. Such a basic quantity eludes both theory and observation, because of an imperfect understanding of the star-formation process and because of incompleteness in surveying the Galaxy. The Arches cluster is ideal for investigating such limits, being large enough to expect stars at least as massive as approximately 500 solar masses (approximately 500 Mo; based on a typical mass function), and young enough for its most massive members to still be visible. It is also old enough to be free of its natal molecular cloud, it is at a well-established distance, and it is close enough for us to discern its individual stars. Here I report an absence of stars with initial masses greater than 130 Mo in the Arches cluster, whereas the typical mass function predicts 18. I conclude that this indicates a firm limit of 150 Mo for stars; the probability that the observations are consistent with there being no upper limit is 10(-8).  相似文献   

10.
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.  相似文献   

11.
Xenoturbella bocki, first described in 1949 (ref. 1), is a delicate, ciliated, marine worm with a simple body plan: it lacks a through gut, organized gonads, excretory structures and coelomic cavities. Its nervous system is a diffuse nerve net with no brain. Xenoturbella's affinities have long been obscure and it was initially linked to turbellarian flatworms. Subsequent authors considered it variously as related to hemichordates and echinoderms owing to similarities of nerve net and epidermal ultrastructure, to acoelomorph flatworms based on body plan and ciliary ultrastructure (also shared by hemichordates), or as among the most primitive of Bilateria. In 1997 two papers seemed to solve this uncertainty: molecular phylogenetic analyses placed Xenoturbella within the bivalve molluscs, and eggs and larvae resembling those of bivalves were found within specimens of Xenoturbella. This molluscan origin implies that all bivalve characters are lost during a radical metamorphosis into the adult Xenoturbella. Here, using data from three genes, we show that the samples in these studies were contaminated by bivalve embryos eaten by Xenoturbella and that Xenoturbella is in fact a deuterostome related to hemichordates and echinoderms.  相似文献   

12.
Brittain SD  Rettig TW 《Nature》2002,418(6893):57-59
Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.  相似文献   

13.
Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289?days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131?days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.  相似文献   

14.
Maehara H  Shibayama T  Notsu S  Notsu Y  Nagao T  Kusaba S  Honda S  Nogami D  Shibata K 《Nature》2012,485(7399):478-481
Solar flares are caused by the sudden release of magnetic energy stored near sunspots. They release 10(29) to 10(32)?ergs of energy on a timescale of hours. Similar flares have been observed on many stars, with larger 'superflares' seen on a variety of stars, some of which are rapidly rotating and some of which are of ordinary solar type. The small number of superflares observed on solar-type stars has hitherto precluded a detailed study of them. Here we report observations of 365 superflares, including some from slowly rotating solar-type stars, from about 83,000 stars observed over 120 days. Quasi-periodic brightness modulations observed in the solar-type stars suggest that they have much larger starspots than does the Sun. The maximum energy of the flare is not correlated with the stellar rotation period, but the data suggest that superflares occur more frequently on rapidly rotating stars. It has been proposed that hot Jupiters may be important in the generation of superflares on solar-type stars, but none have been discovered around the stars that we have studied, indicating that hot Jupiters associated with superflares are rare.  相似文献   

15.
以X-ray亮度为标准,选取了16颗G型的年轻类太阳恒星进行了测光观测,并通过眦软件经行了测光处理,获得了9颗年轻类太阳恒星的自转周期.结合一些T Tauri型星、零龄主序恒星的自转周期,X-ray亮度得到自转较快的类太阳恒星与自转较慢的这些恒星比较,前者具有更强的X-ray辐射.但是,当恒星自转极快时,却并未发现自转和X-ray辐射强度之间的明显相关性.  相似文献   

16.
Prochaska JX  Howk JC  Wolfe AM 《Nature》2003,423(6935):57-59
The discovery of metal-poor stars (where metal is any element more massive than helium) has enabled astronomers to probe the chemical enrichment history of the Milky Way. More recently, element abundances in gas inside high-redshift galaxies has been probed through the absorption lines imprinted on the spectra of background quasars, but these have typically yielded measurements of only a few elements. Furthermore, interpretation of these abundances is complicated by the fact that differential incorporation of metals into dust can produce an abundance pattern similar to that expected from nucleosynthesis by massive stars. Here we report the observation of over 25 elements in a galaxy at redshift z = 2.626. With these data, we can examine nucleosynthetic processes independent of the uncertainty arising from depletion. We find that the galaxy was enriched mainly by massive stars (M > 15 solar masses) and propose that it is the progenitor of a massive elliptical galaxy. The detailed abundance patterns suggest that boron is produced through processes that act independently of metallicity, and may require alternative mechanisms for the nucleosynthesis of germanium.  相似文献   

17.
Beltrán MT  Cesaroni R  Codella C  Testi L  Furuya RS  Olmi L 《Nature》2006,443(7110):427-429
Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars approximately 10 times more massive than the Sun (approximately 10M(o)), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10M(o) exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass ( > 8M(o)) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude that the gas is falling inwards towards a very young star of approximately 20M(o), in line with theoretical predictions of non-spherical accretion.  相似文献   

18.
Ghez AM  Morris M  Becklin EE  Tanner A  Kremenek T 《Nature》2000,407(6802):349-351
Recent measurements of the velocities of stars near the centre of the Milky Way have provided the strongest evidence for the presence of a supermassive black hole in a galaxy, but the observational uncertainties poorly constrain many of the black hole's properties. Determining the accelerations of stars in their orbits around the centre provides much more precise information about the position and mass of the black hole. Here we report measurements of the accelerations of three stars located approximately 0.005 pc (projected on the sky) from the central radio source Sagittarius A* (Sgr A*); these accelerations are comparable to those experienced by the Earth as it orbits the Sun. These data increase the inferred minimum mass density in the central region of the Galaxy by an order of magnitude relative to previous results, and localize the dark mass to within 0.05 +/- 0.04 arcsec of the nominal position of Sgr A*. In addition, the orbital period of one of the observed stars could be as short as 15 years, allowing us the opportunity in the near future to observe an entire period.  相似文献   

19.
The birth of very massive stars is not well understood, in contrast to the formation process of low-mass stars like our Sun. It is not even clear that massive stars can form as single entities; rather, they might form through the mergers of smaller ones born in tight groups. The recent claim of the discovery of a massive protostar in M17 (a nearby giant ionized region) forming through the same mechanism as low-mass stars has therefore generated considerable interest. Here we show that this protostar has an intermediate mass of only 2.5 to 8 solar masses (M(o), contrary to the earlier claim of 20M(o) (ref. 8). The surrounding circumstellar envelope contains only 0.09M(o) and a much more extended local molecular cloud has 4-9M(o).  相似文献   

20.
Maxted PF  Napiwotzki R  Dobbie PD  Burleigh MR 《Nature》2006,442(7102):543-545
Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号