首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
On a cellular level, formation of memory is based on a selective change in synaptic efficacy that is both fast and, in case of important information, long-lasting. Rapidity of cellular changes is achieved by modifying preexisting synaptic molecules (receptors, ion channels), which instantaneously alters the efficacy of synaptic transmission. Endurance, that is the formation of long-term memory (LTM), is based on transient and perhaps also long-lasting changes in protein synthesis. A number of different methods exist to interfere with the synthesis of specific proteins or proteins in general. Other methods, in turn, help to identify proteins whose synthesis is changed following learning. These mostly molecular methods are briefly described in the present review. Their successful application in a variety of memory paradigms in invertebrates and vertebrates is illustrated. The data support the importance of selective changes in gene expression for LTM. Proteins newly synthesized during memory consolidation are likely to contribute to restructuring processes at the synapse, altering the efficiency of transmission beyond the scope of STM. Increased or, less often, decreased synthesis of proteins appears during specific time windows following learning. Recent evidence supports older data suggesting that two or even more waves of protein synthesis exist during the consolidation period. It is expected that the new molecular methods will help to identify and characterize molecules whose expression changes during LTM formation even in complex vertebrate learning paradigms.  相似文献   

6.
7.
The tyrosine phosphorylation cascade is a hallmark of platelet-derived growth factor (PDGF)- induced signal transduction. The amplitude and propagation of the tyrosine phosphorylation signal relies on the balance between tyrosine kinase and tyrosine phosphatase. The tyrosine kinase is latent in the absence of stimulation, whereas the tyrosine phosphatase is highly and constitutively active. Therefore, the kinase activation should be accompanied by temporal and spatial inactivation of tyrosine phosphatase to achieve the robust amplification of tyrosine phosphorylation. For the past decade, reactive oxygen species have been receiving a great deal of attention with regard to their ability to shut down tyrosine phosphatase activities in a reversible manner. In this article, the crosstalk between tyrosine phosphorylation and reactive oxygen species in PDGF signaling is discussed. Received 2 October 2006; received after revision 13 November 2006; accepted 27 November 2006  相似文献   

8.
9.
10.
11.
12.
This review highlights progress in dissecting how plant nitrate reductase (NR) activity is regulated by Ca2+, protein kinases, protein kinase kinases, protein phosphatases, 14-3-3 proteins and protease(s). The signalling components that regulate NR have also been discovered to target other enzymes of metabolism, vesicle trafficking and cellular signalling. Extracellular sugars exert a major impact on the 14-3-3-binding status and stability of many target proteins, including NR in plants, whereas other stimuli affect the regulation of some targets and not others. We thus begin to see how selective or global switches in cellular behaviour are triggered by regulatory networks in response to different environmental stimuli. Surprisingly, the question of how changes in NR activity actually affect the rate of nitrate assimilation is turning out to be a tough problem.  相似文献   

13.
The mitochondrial oxidative phosphorylation system is responsible for providing the bulk of cellular ATP molecules. There is a growing body of information regarding the regulation of this process by a number of second messenger-mediated signal transduction mechanisms, although direct studies aimed at elucidating this regulation are limited. The main second messengers affecting mitochondrial signal transduction are cAMP and calcium. Other second messengers include ceramide and reactive oxygen species as well as nitric oxide and reactive nitrogen species. This review focuses on available data on the regulation of the mitochondrial oxidative phosphorylation system by signal transduction mechanisms and is organised according to the second messengers involved, because of their pivotal role in mitochondrial function. Future perspectives for further investigations regarding these mechanisms in the regulation of the oxidative phosphorylation system are formulated. Received 11 December 2005; received after revision 14 January 2006; accepted 6 February 2006  相似文献   

14.
15.
The discovery and cloning of the cytokine tumor necrosis factor α (TNF) gave rise to new hopes for a significant victory in the war against cancer. Preclinical in vitro studies in cell cultures and in vivo studies in animal models demonstrated the antitumor capacities of TNF. Although clinical studies were largely made possible by the availability of recombinant TNF, phase I and II clinical trials showed very quickly that the systemic administration of TNF induced severe side effects mainly due to its pleiotropic action on immunocompetent cells. The clinical manifestations of the side effects were similar to those observed during a severe infection and inflammation. Very recently, lessons from these clinical studies yielded refined approaches whereby the toxicity of TNF is limited through local administration, a combination with other therapeutic regimens and targeted gene therapy. These new approaches are slated for larger clinical trials and in the near future might demonstrate the limited but powerful usefulness of TNF as an antineoplastic agent for different types of cancer. Received 7 September 1998; received after revision 15 October 1998; accepted 15 October 1998  相似文献   

16.
The physiological metabolism of proteins guarantees that different cellular compartments contain the appropriate concentration of proteins to perform their biological functions and, after a variable period of wear and tear, mediates their natural catabolism. The equilibrium between protein synthesis and catabolism ensures an effective turnover, but hereditary or acquired abnormalities of protein structure can provoke a premature loss of biological function, an accelerated catabolism and diseases caused by the loss of an irreplaceable function. In certain proteins, abnormal structure and metabolism are associated with a strong tendency to self-aggregation into a polymeric fibrillar structure, and in these cases the disease is not principally caused by the loss of an irreplaceable function but by the action of this new biological entity. Amyloid fibrils are an apparently inert, insoluble, mainly extracellular protein polymer that kills the cell without tissue necrosis but by activation of the apoptotic mechanism. We analyzed the data reported so far on the structural and functional properties of four prototypic proteins with well-known biological functions (lysozyme, transthyretin, β2-microglobulin and apolipoprotein AI) that are able to create amyloid fibrils under certain conditions, with the perspective of evaluating whether the achievement of biological function favors or inhibits the process of fibril formation. Furthermore, studying the biological functions carried out by amyloid fibrils reveals new types of protein-protein interactions in the transmission of messages to cells and may provide new ideas for effective therapeutic strategies. Received 9 November 1998; received after revision 15 January 1999; accepted 15 January 1999  相似文献   

17.
Protein kinase C (PKC) is an important signaling molecule in the heart, but its targets remain unclear. Using a PKC substrate antibody, we detected a 40-kDa phosphorylated cardiac protein that was subsequently identified by tandem mass spectroscopy as muscle creatine kinase (M-CK) with phosphorylation at serine 128. The forward reaction using ATP to generate phosphocreatine was reduced, while the reverse reaction using phosphocreatine to generate ATP was increased following dephosphorylation of immunoprecipitated M-CK with protein phosphatase 2A (PP2A) or PP2C. Despite higher PKC levels in diabetic hearts, decreased phosphorylation of M-CK was more prominent than the reduction in its expression. Changes in CK activity in diabetic hearts were similar to those found following dephosphorylation of M-CK from control hearts. The decrease in phosphorylation may act as a compensatory mechanism to maintain CK activity at an appropriate level for cytosolic ATP regeneration in the diabetic heart. Received 15 September 2008; received after revision 30 September 2008; accepted 13 October 2008  相似文献   

18.
To determine if intestinal stromal cells secrete diffusible factors such as insulin-like growth factors (IGFs) capable of regulating epithelial cell growth in vitro, stromal cells were isolated by enzymatic digestion of rat intestine. Incorporation of [3H]thymidine into DNA and [14C]leucine into protein of IEC-6 cells, a model intestinal epithelial cell line, was significantly increased (two- to threefold) when the IEC-6 cells were co-cultured with stromal cells, relative to IEC-6 cells grown alone. Medium conditioned by stromal cells stimulated DNA synthesis of IEC-6 cells in a dose-dependent manner. Analysis of the conditioned medium revealed that intestinal stromal cells secreted IGF-I, but little IGF-II, in addition to an M r 32,000 IGF-binding protein (IGFBP-2) and an IGFBP having M r∼ 24,000. We conclude that rat intestinal stromal cells secrete one or more diffusible factors, which may include IGF-I and IGFBPs, capable of stimulating proliferation of IEC-6 cells in vitro. Received 25 August 1997; received after revision 7 November 1997; accepted 20 November 1997  相似文献   

19.
20.
Sensing life: regulation of sensory neuron survival by neurotrophins   总被引:5,自引:0,他引:5  
Neurotrophins are a family of structurally and functionally related neurotrophic factors which, in mammals, include: nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 (NT-3), and NT-4/5. In addition to their canonical role in promoting neuronal survival, these molecules appear to regulate multiple aspects of the development of the nervous system in vertebrates, including neuronal differentiation, axon elongation and target innervation, among others. Actions of neurotrophins and of their receptors in vivo are being analyzed by loss-of-function or gain-of-function experiments in mice. Here, we review the phenotypes of the primary sensory system in these mutant mouse strains and the different strategies specifically involved in the regulation of neuronal survival by neurotrophins in this portion of the nervous system. Received 10 December 2001; received after revision 11 May 2002; accepted 13 May 2002 RID="*" ID="*"Corresponding author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号