首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
把含有n个元素的一个集合分成恰好有k个非空子集合的分拆数目就叫做第二类Stirling数,第二类Stirling数及相关问题一直以来就是人们感兴趣的研究课题,并有大量的研究成果,它在组合数学、数论中占有重要地位,有着广泛的应用.通过对第二类Stirling数的组合生成函数进行推广来对第二类Stirling数进行推广,定义了一类广义的第二类Stirling数,进一步获得第二类Stirling数的一些新的公式,推广了已有文献的结果.  相似文献   

2.
广义第二类Stirling数   总被引:1,自引:0,他引:1  
讨论了广义第二类Stirling数的性质,得到了第二类Stirling数的一些新的递归公式.  相似文献   

3.
第二类相伴Stirling数是第二类Stirling数的自然推广,本文利用归纳法得到了第二类相伴Stirling数的一个新的显示公式.  相似文献   

4.
第二类Stirling数{n n-i}可用组合数表示.得到了第二类Stirling数用组合数表示的递推公式,从而对所有自然数i给出了{n n-i}用组合数表示的显示公式.  相似文献   

5.
本文指出:二项展开式中的系数H数其实就是第二类Stirling数,并通过第二类Stirling数研究了H数的性质。  相似文献   

6.
利用第一类Stirling数与第二类Stirling数的关系式,给出第一类Stirling数S1(n,n-5),S1(n,n-6)的两个计算公式。  相似文献   

7.
本文主要讨论两类Stirling数的推广问题.考察函数 及其逆关系 ,通过研究,可以建立sk(n,r)=    等一些较为 一般性的恒等关系.若考虑其特殊情况,即置      ,还可推得                 与                    。特别再令K=1,便得到通常的第一类和第二类的Stirling数.  相似文献   

8.
设k和n为非负整数.第二类Stirling数表示将n个元素划分为恰好k个非空集合的个数,记为S(n,k).对任意给定的素数p和正整数n,存在惟一的整数a和m≥0使得n=apm,其中(a,p)=1(a与p互素).称m为n的p-adic赋值,并记vp(n)=m.第二类Stirling数的p-adic赋值是数论和代数拓扑领域的重要问题.本文研究了一些特殊第二类Stirling数S(pn,2tp)的p-adic赋值,其中p为奇素数,t和n为正整数.本文证明当n≥2,2≤2tp(S(pn,2tp))≥n+2-2t,推广了Zhao和Qiu最近的结果.  相似文献   

9.
高阶Bernoulli数与两类Stirling数的恒等式   总被引:1,自引:0,他引:1  
朱伟义  林大志 《河南科学》2006,24(5):636-637
利用高阶Bernoulli数与第一类Stirling数S1(n,k)和第二类Stirling数S2(n,k)的定义,研究了其母函数的幂级数展开,揭示了高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间的内在联系,得到了几个高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)有趣的恒等式.  相似文献   

10.
L.Comtet对第二类Stirling数进行了推广,并已获得了相应的结果。对于第二类推广的Stirling数给出了一个指数型生成公式∑n=k^∞Sn(n,k)n!t^n=k∑i=0 eai /Пk(ai),利用这个公式获得了几个相关的支持性结果。  相似文献   

11.
本文研究了第一类Stirling数的奇偶性,并得到了其奇偶性的一些结论。  相似文献   

12.
第二类Stirling数的等价表示式   总被引:1,自引:0,他引:1  
本文对第二类Stirling数几个等价表示式作出论证,得到了新的代数证法和若干推论  相似文献   

13.
Poisson分布中的Stirling数与Bell数   总被引:2,自引:0,他引:2  
本文讨论了组合数学中的Stirling数,Bell数与概率论中的Poisson分布之间的一些联系,即对每个n,Poisson分布是对应于n阶矩等于民Bn的概率分布,并用Bell来表示参数λ=1的Poisson分布的n阶中心矩。  相似文献   

14.
以组合分析方法引入指数型生成函数,利用正交关系通过迭代给出第二类Stirling数的两个新的解析表示式。  相似文献   

15.
关于Bell数、有序Bell数及Stirling数的几个恒等式   总被引:6,自引:0,他引:6  
首先给出与第一类Stirling数有联系的两个发生函数间关系引理及其相关的引理,然后利用这些引理和发生函数方法建立起涉及第一类降阶Stirling数、第一类升阶Stirling数分别与Bernou lli数、Eu ler数、Bell数及有序Bell数的几个恒等式.  相似文献   

16.
利用广义第二类Stirling数的定义,给出广义第二类Stirling数 的一个公式,更一般地给出 的一个公式.  相似文献   

17.
本文从组合意义角度对两类普通stirling数进行了推广.借助发生函数的方法给出了推广后的两类stirling数满足的基本递推关系以及各种形式的发生函数.进一步又得到了它们的若干基本性质,如"三角"递推关系"垂直"递推关系、同余性质等.  相似文献   

18.
设 $n$ 和 $k$ 为任意正整数. 第二类\ Stirling 数, 记作\ $S(n,k)$, 表示将\ $n$ 个元素划分为恰好\ $k$ 个非空集合的个数. 设\ $p$ 为奇素数, 令\ $v_p(n)$ 表示 \ $n$ 的\ $p$-adic 赋值, 即\ $v_p(n)$ 是能整除\ $n$ 的最大的\ $p$ 的方幂. 一般来说, 计算\ $S(n, k)$ 的\ $p$-adic 赋值是很困难的. 有许多作者研究了第二类\ Stirling 数 $S(n,k)$的算术性质, 包括\ Davis, Lengyel 以及\ Hong 等. 在本文中, 我们研究第二类\ Stirling 数的\ $p$-adic 赋值的一些性质. 事实上, 我们通过对\ $S(n, k)$ 进行\ $p$-adic 分析证明了\ $S(p, 2)\ge 1$, 其中等号成立当且仅当\ $p$ 为一个 Wieferich 素数. 当\ $n\ge 2$ 时, 我们还证明了\ $v_p(S(p^n, 2p))\ge n$, 以及\ $v_p(S(p^n, 4p))\ge n-2\ (p\ge 5)$, 这改进了\ Adelberg 不久前的结果.  相似文献   

19.
以组合分析方法引入指数型生成函数,利用正交关系通过迭代给出第二类 Stir-ling 数的两个新的解析表示式.  相似文献   

20.
用数学归纳法证明了第二类Stirling S2(n,r),n≥r的计算公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号