首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
【目的】确定给定匹配数的n个点图的拉普拉斯代数连通度的上界与该上界所对应的极图。【方法】首先,利用图的匹配数与奇连通分支个数的关系与图的变换等方法刻画了给定匹配数的n个点图的拉普拉斯代数连通度上界所对应的极图;其次,利用具有相同邻点集的图与对应特征值的关系得到给定匹配数的n个点图的拉普拉斯代数连通度上界。【结果】借助图与补图的关系以及拉普拉斯特征方程证明得到给定匹配数的n个点图的拉普拉斯代数连通度的上界与该上界所对应的极图是一一对应且唯一确定的,从而同时确定了给定匹配数的n个点图的拉普拉斯代数连通度的上界以及此上界所对应的极图。【结论】用全新的方法同时确定了给定匹配数的n个点图的拉普拉斯代数连通度的上界以及此上界所对应的极图,克服了以往利用图的最小度,最大连通度与代数连通度的关系只刻画了给定匹配数的图中具有最大代数连通度的图类特征,但无法得到此类图的连通度的上界这一弊端。  相似文献   

2.
讨论了给定控制数的树的代数连通度的上界,并对极图给出了刻画.  相似文献   

3.
对任一个n阶单图G,用a(G)表示G的代数连通度,Gc为G的补图.通过代数连通度与Laplacian谱半径的关系,给出了几类图的Nordhaus-Gaddum的代数连通度的和的界.  相似文献   

4.
给出了给定匹配数、点连通度或者色数的图的第二Laplacian谱矩的上界,并刻画了能够取到极值的极图.  相似文献   

5.
总结了图与复杂网络(包括随机图与小世界网络)的拉普拉斯谱的最新的结果和研究进展.主要内容包括给定度序列的拉普拉斯谱半径、拉普拉斯系数、代数连通度、双随机矩阵和随机图与小世界网络的谱的性质.并且提出了可能进一步研究的一些相关的问题.  相似文献   

6.
Kp表示p阶完全图.选取Kp的任意r个顶点分别点粘接r棵树,得到n阶图Ln,p.所有n阶图Ln,p的集合记为(L)n,p.代数连通度是刻画图的连通性的重要参数,笔者分别确定了Ln,p中具有最大、最小和第二小代数连通度的图.  相似文献   

7.
文章通过研究双星图的代数连通度的极限点 ,给出树的代数连通度的极限点的分布范围 :[0,(3- 5)/2] ,以及分布情况的一个结论 : ε>0 ,至少存在一个树类 ,其代数连通度的极限为r>0 ,且r<ε。  相似文献   

8.
G是一个简单图.a(G),k(G)分别为G的代数连通度和点连通度,该文刻画了满足a(G)=k(G)的图.G=(V,E)是一个n阶简单图,点连通度为k(G)≤[n/2].H是G的任意最小点割集,则a(G)=k(G)当且仅当对任意u∈H和v∈V\H,有uv∈E.  相似文献   

9.
讨论了树的代数连通度.利用移接变形给出树的代数连通度的一种变化关系,同时给出了两类树的代数连通度与直径的关系.  相似文献   

10.
关于图的代数连通度的注记   总被引:3,自引:1,他引:3  
n阶连通图G的代数连通度、点连通度和边连通度分别记作α(G) ,κ(G)和λ(G) .本文给出了当 2 κ(G) n- 2时 ,α(G) =κ(G)成立的充要条件 ,讨论了α(G)的代数重数以及相应于特征值α(G)的特征向量的性质 .最后给出了当 1 λ(G) n- 2时 ,α(G) =λ(G)的充要条件 .  相似文献   

11.
拟双星图的N-G型的代数连通度的界   总被引:1,自引:0,他引:1  
文章利用图G的代数连通度与其线图的邻接谱半径之间的关系,给出:任n阶拟双星图G ,s0-1相似文献   

12.
对任一个凡阶单图G,用0(G)表示G的代数连通度,Gc表示它的补图.针对双圈图.即边数等于顶点数加1的且只含有2个边不交的基本圈的简单连通图,证明了对任一n阶双圈图G,有1≤a(G)+a(G^C),当且仅当3G兰G1时等式成立.  相似文献   

13.
对任一个n阶简单图G,用a(G)表示G的代数连通度.在已有文献研究的基础上,通过分类研究和个别图具体研究,证明了对任一含有两个基本圈的简单图G,有1≤a(G)+a(Gc).  相似文献   

14.
第二原子键指标为研究分子的特性提供了便利,其极值问题更是研究的重点.针对第二原子键的极值问题,应用了一个新的变换,给出了树的第二原子键指标的极大(小)值的更简单的证明.通过同样的变换,得到了树的第二原子键指标的第二大和第二小值.  相似文献   

15.
随着计算机技术和网络技术的不断发展,图的谱被广泛应用于网络拓扑结构的特征分析,Laplacian矩阵的谱(特别是最大特征值和次小特征值)在网络结构中扮演重要角色.设G=(V,E)是一个具有n个顶点的简单图,A(G)为G的邻接矩阵,D(G)为G的度对角矩阵.定义G的Laplacian矩阵为L(G)=D(G)-A(G),设L(G)的特征值为μ1(G)≥μ2(G)≥…≥μn-1(G)≥μn(G)=0,最大特征值μ1(G)称为图G的Laplacian谱半径;次小特征值μn-1也称作图G的代数连通度.本文讨论了树的L(G)的最大与次小特征值和μ1(G)+μn-1(G)的上界,得到几个有意义的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号