首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
高速列车蛇行运动稳定性研究概述   总被引:1,自引:0,他引:1  
高速列车长期服役的可靠性是高铁建设的首要保证,自激蛇行运动是轨道车辆所特有的一种失稳形式,为了保证车辆的运动稳定性,确保其高速、安全行驶,以高速列车蛇行失稳的理论研究方法为背景,概述了蛇行失稳研究中的主要研究方法及其存在的不足,对近期的研究热点方向进行了概述并对非光滑分岔、非对称运行稳定性等方向进行了展望。对于高速列车的确定性和稳定性而言,在不考虑车辆非线性特性的情况下,一般可以采用特征根法、Routh-Hurwitz准则判定法、最小阻尼系数等方法进行分析;当必须考虑轮轨接触以及悬挂系统等非线性特征时,可以采用特征值变化法、QR算法+二分法、中心流形法、打靶法、延续算法等方法。对于车辆的随机稳定性而言,可以采用随机非线性动力学Hamilton理论、蒙特卡洛法、半隐式的Milstein随机数值模拟、小数据量等方法对随机稳定性、随机分岔以及分岔类型进行分析。由于能够考虑自身结构参数激励、轮轨接触不平顺激励,能得到更接近真实运行条件下的失稳临界速度,随机稳定性、随机分岔的理论研究和试验研究逐渐得到研究人员的关注,成为高速列车蛇行失稳研究的热点方向。  相似文献   

2.
高速列车侧风效应的数值模拟   总被引:5,自引:1,他引:4  
在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SSTk-ω两方程湍流模型和有限体积法,对某型高速列车以350 km/h的速度在25 m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.  相似文献   

3.
为考虑侧风作用下风障对桥上高速列车气动特性的影响,以高速列车与双线简支箱梁桥为原型,自主研制了缩尺比为1:20的风障-车-桥模型风洞试验模型装置。测试高速列车的头车、中车及尾车各自的气动力。分析风速、列车位于桥梁的横向位置、不同风障高度与透风率、风偏角对高速列车气动系数的影响,最后以静力轮重减载率作为风障防风效果评价指标,给出风障气动选型参数建议值。研究结果表明:雷诺数对车-桥系统的气动性能影响有限;桥梁上设置风障可明显减小列车所受气动力;列车位于迎风侧线路时运行时所受气动荷载较大;随着风障高度的增大,列车气动力系数减小;当风障增加到某一高度后列车气动系数基本不再随风障高度变化,但随着透风率增大而增大;当风偏角小于等于20°时,高度为4 m,透风率为0%风障的挡风效果较好,而当风偏角大于20°时,高度为4 m,透风率为30%风障的挡风效果较优。研究结论可为实际工程中风障气动选型提供参考。  相似文献   

4.
针对风雨耦合作用下高速列车的气动特性问题,在大气边界层风洞中搭建风雨耦合作用试验系统,以CRH2型列车为研究对象,开展高速列车在风雨环境下的静风荷载试验;分析列车在风雨耦合作用下的气动力系数,探明不同风偏角时降雨强度对列车头车和中车气动力系数的影响规律。研究结果表明:降雨对列车头车和中车气动力系数的影响不容忽视,降雨强度越大,对气动力系数的影响越显著;降雨增大头车和中车的阻力系数,在一定程度上增大侧偏力矩系数,降低侧力系数、升力系数与俯仰力矩系数,对倾覆力矩系数影响较小;在不同风偏角时,列车气动特性受降雨强度的影响程度不同,头车气动力系数在风偏角为60°时受降雨影响较大,中车阻力系数在风偏角为20°时受降雨影响较大,其余各气动力系数在风偏角为60°时受降雨影响较大。  相似文献   

5.
介绍高速客车蛇形运动和临界速度,引入蛇形运动Hopf分岔,用升速法和降速法分别求解线性临界速度和非线性临界速度.用德国低干扰轨道谱作为轨道不平顺激扰,基于多体动力学软件SIMPACK,建立高速客车仿真模型,完成参数设置.求解出高速客车线性临界速度为400 km/h,非线性临界速度为355 km/h,绘制蛇形运动Hopf分岔图.对车辆主要悬挂参数进行线性处理,通过控制变量法分析单个悬挂参数对车辆非线性临界速度的影响;对于单个悬挂参数的取值,用变化系数法逐一实验.结果表明,适当增大抗蛇行减振器阻尼,车辆稳定性提升明显,轴箱定位刚度的影响次之,横向减振器主要提高车辆的曲线通过能力,空气弹簧参数对非线性临界速度基本没有影响.  相似文献   

6.
主要研究高速列车超临界和亚临界分岔蛇行运动的基本特征和评价方法.首先考虑不同轨道激励对蛇行运行分岔图的影响,并且提出一种在轨道激励的基础上增加横向脉冲的方法,然后根据极限环波幅、构架横向加速度均方根值及轮轴横向力均方根值分别对高速列车蛇行运动稳定性进行对比.针对不同高速列车进行极限环失稳后的安全性评估,分析高速列车蛇行失稳的脱轨安全性.另外,对于具有磨耗型车轮踏面的车辆,也对其蛇行运动稳定性和运行安全性评估进行了探讨.最后,在滚动振动试验台上进行了稳定性测试,比较了不同蛇行运动稳定性评价方法并验证了仿真结果.  相似文献   

7.
主动四轮转向系统对高速汽车侧风稳定性的控制研究   总被引:1,自引:0,他引:1  
建立了考虑侧风作用的汽车三自由度非线性动力学模型,应用基于BP神经网络的模型,参考自适应控制方法设计了主动四轮转向控制系统,并对非线性汽车模型进行了控制仿真.仿真结果表明,主动四轮转向系统能够有效的减小侧风对高速行驶汽车运动状态的影响,提高侧风稳定性.  相似文献   

8.
为了给高速列车风洞侧风试验的模型选取提供更多的参考依据,采用计算流体力学(Computational Fluid Dynamics,CFD)方法对不同模型以200km/h速度运行时,在不同侧向风速下的气动力和流场结构进行分析.结果表明:相同侧向风速下,不同的高速列车缩比模型对头车的气动力系数影响不大,可以采用更短编组长度的高速列车模型即1.2车模型(头车+0.2节尾车)代替3车联挂模型对头车的气动特性进行风洞试验研究;考虑到尾车结构对头车末端区域的流场结构和压力分布的影响,高速列车风洞侧风试验中,不建议采用更短编组方式的模型.  相似文献   

9.
为了研究风沙环境下高速列车的冲蚀效应,基于空气动力学理论,使用Navier-Stokes方程、标准κ-ε湍流模型对气流进行连续化假设,应用DPM模型对沙粒粒子进行离散化处理。数值模拟了不同风速、不同沙粒粒子直径、不同浓度下的高速列车冲蚀效应,采用欧拉-拉格朗日方法进行求解计算。研究结果表明:速度越大,反射后的粒子距离列车表面越远,偏航角越大,列车附近的粒子运动越无规则;当速度不变时,列车车头处的冲蚀率随着粒子直径的增大而增大;当粒子直径不变时,冲蚀率随着粒子浓度的增大而增大,随着速度的增大呈现先减小后增大的趋势,且最大冲蚀率是最小冲蚀率的2.8倍。  相似文献   

10.
基于计算流体动力学理论,采用数值模拟的方法计算设置有不同高度风障的双线简支箱梁桥上高速列车的气动力,分析绕列车几何中心、迎风侧轮轨接触轴线和背风侧轮轨接触轴线的侧倾力矩,提出控制侧倾力矩和累计控制侧倾力矩的概念,并以此为依据通过不断逼近的方法得到最优的风障高度,最后对风障改善列车气动性能的机理进行研究。研究结果表明:风障的高度对列车的气动力影响较大,但根据各分力得出的最优风障高度不一致;侧倾力矩对轮轨接触轴线比几何中心大,且对风障高度也更加敏感;控制侧倾力矩当风障高度较小时为对背风侧轮轨接触轴线之矩,当风障增加到一定高度后,将转移到迎风侧轮轨接触轴线,从而对于双线桥最优风障高度并不是对背风侧或迎风侧轮轨接触轴线侧倾力矩为0 N?m的风障高度;综合考虑列车位于两线路上的气动作用,根据累计控制侧倾力矩得出气动缩尺模型的最优风障高度为95 mm,从而可知双线高速铁路简支箱梁桥上1.9 m风障效果最好。  相似文献   

11.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

12.
针对高速汽车在侧风环境下的气动稳定性问题,基于大涡模拟(LES)及五自由度车辆模型,建立了汽车空气动力学与汽车动力学的动态双向耦合分析模型.考虑了主动前轮转向的主动控制(AFS)对高速车辆侧风稳定性的影响;采用调整车辆质心位置的方法验证了动态双向耦合模型的鲁棒性.对在某轿车在有、无驾驶员及有、无AFS控制下的运动及流场特性进行了对比分析.研究结果表明:在侧风作用下车辆的侧向速度及横摆角速度对高速车辆的气动稳定性有着重要影响;在无驾驶员条件下,有AFS控制的车辆仍能回到正常行驶路线,而无AFS控制的车辆无法回到正常行驶路线;在有驾驶员条件下,无AFS控制车辆最大侧向位移为1.1 m,有AFS控制车辆最大侧向位移0.47 m,表明AFS控制有助于提高车辆侧风稳定性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号