共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
提出了一种改进的Camshift跟踪算法来获得目标质心的位置,并在此基础上设计了一种采用单目视觉和声纳反馈信息的移动机器人运动目标跟踪系统.改进的Camshift算法通过自适应地扩展搜索窗口,解决了传统Camshift算法在跟踪中因目标加速度而引起的目标瞬间丢失问题.分析了移动机器人对运动目标的搜索、跟踪及避障等3种基... 相似文献
3.
王立和 《西南师范大学学报(自然科学版)》2018,43(11):63-70
针对Camshift算法只对前一帧预测而导致的目标像素脱靶现象,以及目标像素在帧间位移较大的问题,本文提出一种改进Camshift算法的目标跟踪方法.该算法将加权背景直方图和贪心算法融入Camshift算法,利用贪心算法对前两帧图像信息进行处理,预测出目标在当前帧图像中的位置,再根据目标颜色概率,用Camshift算法找到目标的真实位置,最后在TMS320DM642(数字媒体应用的定点DSP)上对该文算法进行硬件系统的实现,并使用EDMA(增强型直接内存访问)方式和Cache技术对系统进行优化.实验结果表明,与传统Camshift算法相比,该文方法在背景与目标相近的情况下跟踪效果更佳,具有很好的鲁棒性和稳定性,适用于复杂环境下的目标跟踪.在系统实现上,优化后的系统平均帧率提升在3帧/s以上,增强了算法的速度. 相似文献
4.
基于Kalman 滤波的Camshift 运动跟踪算法 总被引:1,自引:0,他引:1
提出将Camshift与Kalman滤波相结合的方法.首先,通过二次搜索来调整搜索窗口的位置和大小,保证Camshift跟踪的可靠性;然后,在Camshift算法的基础上,通过卡尔曼滤波对搜索窗口进行运动预测,保证实时跟踪.实验结果表明,在图像背景复杂且目标不规则运动的情形下,采用此方法仍能有效地跟踪到目标.在真实视频数据上的实验结果表明该方法具有很好的应用前景. 相似文献
5.
针对人眼虹膜跟踪中存在的眨眼和眼睑遮挡问题,提出了基于Camshift算法的虹膜跟踪方法。首先使用Adaboost学习算法进行人眼初步定位,然后加入三庭五眼的比例模型精确定位人眼;在人眼定位的基础上使用一个圆形滑动窗遍历人眼灰度图像,其中平均灰度最小的圆形窗可初步定为虹膜区域;将以上步骤检测出的虹膜作为Camshift算法初始模板,建立虹膜的颜色概率图,利用虹膜的颜色特征完成跟踪。实验证明本算法的虹膜跟踪准确率达到84%;并能解决眨眼和眼睑遮挡问题,保证了跟踪过程的鲁棒性。 相似文献
6.
针对背景中存在颜色相近目标或目标被遮挡时Camshift算法跟踪失败的问题,提出了一种改进的Camshift目标跟踪算法。首先,改进算法模型直方图的计算选用颜色和纹理相融合的直方图概率分布,解决了Camshift算法只使用单一的颜色模型、很难适应物体大范围运动造成的背景变化或遮挡的不足;其次,图像权值采用目标模型与目标候选模型特征概率之比的平方根来计算,并用权值进一步估计目标的位置和方向,克服了原始Camshift算法中图像权值仅依靠目标模型计算的不足,大大减少了背景特征对跟踪的影响;最后,利用粒子滤波对运动目标状态进行估计,以克服目标运动引起的遮挡、交错或重叠,进而提高目标位置跟踪精度。实验结果表明,改进算法的平均每帧成功率达到50%以上,平均中心位置误差低于20%。改进算法能有效改善目标跟踪性能,从而实现目标跟踪的有效性、准确性。 相似文献
7.
8.
基于Camshift算法的移动机器人视觉跟踪系统 总被引:1,自引:0,他引:1
通过采用自主开发的移动机器人平台,设计并实现了一种基于改进Camshift算法的视觉跟踪系统.通过预测前后两帧图像特征面积,在反向投影图像上过滤掉干扰色块.实验表明该方法能有效减小相似干扰物、遮挡等因素对视觉跟踪系统的影响.同时还提出了一种简单快速的图像解释形成机器人控制指令的方法,通过计算目标在图像上的投影到图像轴心的偏转角度来控制机器人的转动,通过计算该投影面积的大小来控制机器人的前进与停止.实验结果证明了机器人指令形成策略的有效性. 相似文献
9.
基于Camshift跟踪算法与SVM的大输液杂质检测识别方法研究 总被引:1,自引:0,他引:1
针对我国医药生产检测包装线上大输液杂质智能检测技术问题,提出了一种利用实时视频图像处理技术检测识别大输液杂质的方法.该方法对连续多帧被旋转的大输液瓶图像运用差分图像运动分析方法提取目标杂质;运用图像处理技术去除气泡噪声,准确分割目标杂质,采用Camshift跟踪算法连续跟踪几帧运动杂质以确保检测准确率;根据Camshift跟踪算法提取出的杂质运动和几何特征,应用SVM(Support Vector Machine)准确识别杂质类型.实验结果表明,该方法检测识别直径大于等于4个像素的杂质的检测识别率平均可达到95.4%,检测识别速率平均可达到581 ms/瓶. 相似文献
10.
为解决视频实景监视系统中因场景光照、阴影及远距离小目标跟踪易丢失问题,提出一种改进局部二值模式(local binary patterns, LBP)算法与Camshift结合的目标跟踪方法。利用LBP算子纹理和颜色对阴影不敏感的特性,采用改进的LBP算子与高斯混合模型结合进行背景建模和目标检测,以抑制阴影的干扰;同时将LBP算子的纹理和颜色融入Camshift算法中,结合Kalman滤波进行目标运动状态的预测,最终实现对监视场景中运动目标的可靠、稳定跟踪。采集行人、车辆及航空器等不同类目标进行实验,验证了本文方法不仅能够稳定、精确地跟踪运动目标,同时可适用于场景雾天低能见度条件下的目标跟踪。 相似文献
11.
基于Camshift和Kalman滤波的仿人机器人手势跟踪 总被引:1,自引:0,他引:1
对仿人机器人MIR-1的双目视觉系统实现实时手势跟踪.通过颜色直方图反投影,将每帧RGB输入图像转换为二维的肤色概率分布图像,基于Camshift算法计算手势跟踪窗口的位置和大小,并用Kalman滤波预测手心位置,有效地解决了背景中大面积肤色干扰和手势部分被遮挡等问题.在仿人机器人MIR-1上完成的手势跟踪实验,验证了此方法的实用性和有效性. 相似文献
12.
为了提高目标跟踪算法在复杂环境下的稳健性,提出了一种将基于颜色特征的均值漂移算法和SURF(Speeded UpRobust Features)特征匹配算法相融合的目标跟踪方法。该算法首先采用颜色特征和SURF特征分别描述目标模板,利用均值漂移算法快速估计目标局部最优解。但仅采用单一颜色特征来估计目标位置,跟踪误差逐渐累积;采用SURF算法精确估算目标位置和尺度,及时修正累积误差。最后根据相似性度量Bhattacharyya系数选择较优的结果作为当前帧跟踪结果,且更新目标模板。实验结果表明,算法在目标发生较大形变、尺度变化、周边具有表观相似目标时具有很强的稳健性,且满足跟踪实时性要求。 相似文献
13.
14.
针对红外图像序列的特点,提出一种动态融合的目标识别与跟踪算法。由图像序列中的运动信息对目标进行提取,得到自适应波门所需的起始波门和灰度双阈值,以及匹配算法所需的基准模板,其后的跟踪, 融各算法为一体,分时机、分场合地给予灵活运用。最后,以实测的红外图像序列对文中提出的算法进行仿真实验,结果表明该融合算法的可行性与有效性。 相似文献
15.
《四川理工学院学报(自然科学版)》2015,(4):37-40
目标跟踪一直以来都是机器视觉的热点问题,通常目标跟踪主要是通过寻找上下帧的相似特征来确定目标位置。Camshift算法在目标跟踪过程中一般利用的是目标的颜色信息,但在目标受到类似颜色干扰时容易跟踪失败,而NCC算法能够利用目标的结构特征。提出了一种结合Camshift与NCC的跟踪算法,使用Camshift对目标位置进行定位,同时在定位区域利用缩放比例进行NCC匹配得到目标的最终位置。实验结果表明该算法是可行有效的,对比当前传统跟踪算法其跟踪性能有着显著的提高。 相似文献
16.
一种改进的Hausdorff距离目标跟踪算法 总被引:7,自引:1,他引:7
在序列图像中进行目标跟踪是计算机视觉、图像处理和模式识别领域里非常活跃的课题。采用Hausdorff距离模板匹配的方法具有计算量小、适应性强的特点,为了能对复杂背景(包括运动背景或移动镜头)情况下的序列图像进行准确的跟踪,综合考虑了图像边缘的位置信息和方向信息,对模板匹配和模板更新的策略作了改进,与原有方法相比,目标跟踪的准确度和算法的效率有了显著提高。 相似文献