首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
结构损伤识别的柔度灵敏度方法   总被引:3,自引:1,他引:2  
 提出了结构损伤识别的柔度灵敏度方法。首先根据Neumann级数展开来推导结构柔度矩阵关于单元刚度损伤参数的灵敏度公式,以此为基础建立结构的损伤识别方程,通过矩阵拉直运算将矩阵方程转化为线性方程组来求解各单元损伤参数。指出了柔度矩阵灵敏度方法优于特征对灵敏度方法的几个显著特点。最后用一个桁架结构模型对所提方法作了验证。  相似文献   

2.
基于单元模态应变能灵敏度,采用概率统计的方法,提出一种同时考虑模型不确定性和测试噪声影响的损伤统计识别方法。首先,建立基于单元模态应变能灵敏度分析的结构损伤方程组,然后,通过摄动法推导出损伤结构刚度参数的统计特性,并运用损伤概率模型计算各单元的损伤存在概率。最后,用一简支梁数值模拟算例验证了该方法的有效性。研究结果表明:损伤概率越大,表明存在损伤的可能性越大;损伤单元的损伤存在概率大于非损伤单元的损伤存在概率;随着损伤程度的增加,损伤存在概率不断增加,而随着噪声水平的增加,损伤存在概率减小。  相似文献   

3.
给出了基于灵敏度理论的损伤检测的33种指标.以一个三层的钢框架结构为例,比较3种损伤指标对的损伤位置的识别和对损伤程度的评估结果.提出的改进的损伤指标识别效果较好,精度较高,更适用于空间结构的损伤检测.  相似文献   

4.
  基于响应灵敏度分析法对两跨耦合杆系统的损伤识别问题进行了研究。建立了耦合杆系统的有限元运动方程,利用状态空间法计算系统在外激励下的响应。将系统的局部损伤模拟为杆单元抗拉刚度的减少,推导了响应对单元抗拉刚度的灵敏度。并利用此响应灵敏度进行系统的局部损伤识别。数值算例表明,文中方法能快速准确地识别出耦合杆的局部损伤,并且对模拟的人工噪声不敏感。说明该方法具有一定的工程应用前景。  相似文献   

5.
把单元刚度修正系数作为待识别参数,综合考虑了各结构参数对结构损伤的影响,并运用条件优化方法对单元刚度修正系数进行计算,计算了结构损伤时各单元的损伤因子,通过损伤因子即可对单元的损伤情况进行评估,经过实例运算验证了其对结构损伤的敏感性和有效性.  相似文献   

6.
采用二阶频率灵敏度的损伤识别和试验   总被引:5,自引:0,他引:5  
开发结构健康监测系统是结构损伤识别的一个重要课题 .由于结构频率容易测试并且有较高的测量精度 ,因此成为损伤识别中广泛应用的模态参数 .据此提出一种二阶频率灵敏度分析方法 ,通过测量结构损伤前后频率变化的损伤参数识别方法来确定结构的损伤位置和损伤程度 .对于层间剪切结构模型 ,可以测得结构的各阶频率 .对于多种工况进行了框架结构模型的振动试验 .试验结果表明 ,对于层间剪切结构 ,通过测量结构频率变化可以确定结构的损伤位置和损伤程度  相似文献   

7.
为了提高基于附加质量的梁结构损伤识别精度,对附加质量影响因素进行了综合分析。根据梁结构损伤识别的附加质量法,建立梁结构有限元模型,并计算其损伤部位以及损伤程度,同时研究附加质量的大小、数目及位置对结构损伤识别的影响。在验证附加质量法对梁结构损伤识别有效性的基础上,采用不同的质量块附加在梁结构的不同位置进行损伤识别,由得到的损伤识别结果计算损伤识别误差。研究结果表明:附加质量后损伤识别精度有较大提升,有效降低了识别误差;随着损伤程度的增加,识别误差在逐渐增大,附加质量法对小损伤具有较好的识别效果;附加质量的大小和数目是提高梁结构损伤识别精度的主要因素,附加质量的位置对损伤识别结果的影响也不容忽视。  相似文献   

8.
提出功率谱灵敏度与子结构缩聚技术结合的损伤识别方法,在分析响应功率谱对结构单元面积灵敏度的过程中采用差分法,解决了求解参数的偏微分较困难的问题;并将整体结构划分为若干子结构,对未损伤子结构采用Guyan缩聚技术,通过功率谱灵敏度分析的方法对缩聚结构进行损伤识别,该方法只需测量结构的少数几个自由度的响应就可以达到损伤检测的目的.最后,通过1个三层两跨的刚架模型验证了该方法的有效性.  相似文献   

9.
从井架结构模态参数对物理参数变化的灵敏度出发,探讨了井架结构的模型修正问题.以设计参数型模型修正方法为基础,对井架结构杆件的材料、截面形状和几何尺寸等参数进行直接修正.确定优化模型的目标函数及约束变量,利用一阶优化算法对结构参数进行了优化和状态评估.通过实验室简易井架模型的分析验证了此方法的可行性.该方法为复杂井架结构的损伤识别和状态评估提供了一个新思路.修正算法的优化方法采用ANSYS一阶优化方法,敏感性分析和模型修正完全基于ANSYS软件进行,适合于实际工程的应用.  相似文献   

10.
为准确地评估结构的健康状况,提出了一种两阶段损伤诊断方法.引入柔度差值斜率的概念确定结构可能出现损伤单元的位置,采用基于二阶特征灵敏度的方法确定可能损伤单元的损伤程度.应用该方法对由国际结构控制协会与美国土木工程学会(IASC-ASCE)提出的健康监测Benchmark结构进行了分析.结果表明,两阶段损伤诊断方法能够准确地定出可能损伤单元的位置与损伤程度,识别结果与真实的损伤接近,说明该诊断方法是有效的.  相似文献   

11.
基于轴向振动的结构损伤识别方法   总被引:1,自引:0,他引:1  
在理论上推导悬臂梁轴向振动微分方程及其3种支座形式的解析解的基础上,提出了一种基于轴向振动的结构损伤识别方法.该方法以轴向振动的低阶模态振型的二阶导数为损伤指标,无需结构损伤前的完好动力指纹.该指标对结构损伤的位置和程度均很敏感,既能精确定位损伤,又能标定损伤程度,即在损伤位置将发生相反方向的突变,且突变幅度随损伤程度的增大而增大.最后对方钢管构件进行了试验,测试结果证明了该方法的可行性.  相似文献   

12.
随着我国高速铁路的快速发展,针对高速铁路中桥梁的损伤识别研究已成为热门研究领域。与传统静力条件下研究手段不同,在车桥共振条件下的损伤识别研究更加符合实际,具有真实广泛的应用价值。通过时间序列分析的损伤识别方法对桥梁振动响应的仿真数据建立 自回归移动平均模型,定义自回归模型参数的一种代数组合作为损伤因子,分别对比损伤因子的变化程度。最终分析表明,使用时间序列分析方法可以成功地对车桥共振环境激励下的结构损伤进行识别。  相似文献   

13.
幕墙拉索是重要的工程构件,为解决幕墙拉索的损伤检测问题,从弦的强迫振动方程出发,建立了其相应的有限元运动方程。将幕墙拉索的局部损伤模拟为弦单元面积的减少,利用随机振动的虚拟激励法,得到平稳随机激励下结构响应的功率谱密度函数对弦单元面积的灵敏度,采用有限元模型修正实现幕墙拉索的损伤识别。数值算例表明,仅利用有限的几个传感器的频域数据,就能够较好地识别幕墙拉索损伤,并且对模拟的人工噪声不敏感,具有一定的工程实用前景。  相似文献   

14.
相比结构的频率,振型反应的信息更加丰富.振型曲率是对结构损伤十分敏感的一个指标;利用简支梁结构损伤前后的1阶振型曲率差对其进行损伤识别,对损伤位置有较好的识别效果,而利用高阶振型无法进行识别;对于简支梁损伤程度,利用振型曲率差只能进行定性的识别,随着损伤程度的加深,图形突变增大.  相似文献   

15.
提出了一种新的损伤指标用于框架结构的震后损伤识别.以环境振动作为激励信号,采用小波包分解理论,利用框架结构损伤后振动信号的能量在频域内的变化,构建损伤指标DI,并给出了损伤识别流程图.在此基础上,以某钢筋混凝土框架结构为例,设定4种震后损伤工况,对框架结构进行了震后损伤识别分析,探讨了不同楼层、不同类型振动信号对损伤识别效果的影响.结果表明:本文构建的损伤指标DI可以有效识别框架结构的震后损伤,损伤指标DI与损伤程度之间有近似线性的关系;基于较高楼层振动信号的损伤指标值对结构的损伤识别效果较佳;利用速度信号可获得比加速度信号更好的识别效果.  相似文献   

16.
采用转角模态的小波分析方法研究了带刚度下降损伤段的弹性地基梁损伤识别问题.利用有限元分析求解带刚度下降段的模态参数,建立了基于转角模态小波变换识别弹性地基梁损伤的方法.以两端简支弹性地基梁为例,分别给出了地基梁无损伤、梁单独损伤、梁和弹簧同时损伤且损伤位置不同的有限元模型,计算得到了结构的转角模态,并通过转角模态小波分析来识别弹性地基梁内刚度下降段的位置.从识别结果发现,存在随机噪声的情况下,运用了转角模态小波变换方法,仍能识别出地基梁的刚度变化截面.数值算例证实了该方法的有效性和稳健性,研究结果对实际工程中的结构损伤诊断提供参考.  相似文献   

17.
基于Bernoulli-Euler梁振动理论,以等效扭转弹簧模拟裂纹引起的局部软化效应,推导了双裂纹悬臂梁的解析特性方程,提出了识别裂纹参数的"特征方程曲线交点法".通过数值模拟计算,讨论了裂纹位置与裂纹深度对梁的固有频率的影响.应用有限元软件ANSYS对双裂纹悬臂梁进行模态分析,将得到前3阶固有频率作为实测参数,代入双裂纹悬臂梁的特征方程,通过绘制特征方程曲线图,通过交点确定第2条裂纹参数,最后利用数值算例验证了该方法的有效性.  相似文献   

18.
将桩基简化成离散的多自由度系统,对其纵向振动的动力参数进行了分析,对桩基的振动参数频率、振型、频响函数与频域响应对刚度改变的灵敏度进行了数学推导.可知频率对刚度改变的灵敏度很小,振型对刚度改变的灵敏度也不大,但在节点处有一定的影响,频响函数与频域响应对刚度的变化反应比较明显,并且用一个实例进行了验算,得到的结果与理论推导吻合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号