首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文在Banach空间X中考虑以下非线性Volterra-Fredholm型积分微分方程其中t_0≤t≤t_0+T.我们所得主要结果如下:定理 设y(t)∈C'([t_0,t_0+T];X),K~i,K_t~i∈C(t_0,t_0+T]×[t_0,t_0+T]×X×X;X)(i=1,2).又设这里i=1,2.并且对(?)x_i,y_1∈X(i=1,2)及t,s∈[t_0,t_0+T]有其中i=1,2,0<σ≤1/(2T+1),则方程(*)在C’([t_0,t_0+T];X)中存在唯一的解x(t),且迭代序列 X_0(t)=y(t)n=0,1,2,…依C′([t_0,t_0+T];X)中的范数收敛于X_*(t).  相似文献   

2.
下面先给出 BCK-代数中的几个定义   定义 1设〈 X;*, 0〉是一个 BCK-代数, X的一个非空子集 A被称为一个理想,如果它满足   (1)0∈ A  (2)x∈ A, y* x∈ A, y∈ A(以后表示可推出 )  定义 2设和〈 Y;* 1,θ〉是两个 BCK-代数,如果存在一个映射, f∶ X→ Y,使得对于任意的 x, y∈ X,有 f(x* y)=f(x)* 1f(y),则称 f为 X到 Y的一个同态映射,且称 X和 Y是同态的,记 X~ Y  定义 3设 f是两个 BCK-代数到的一个同态,称集合 Ker(f)={x∈ X;f(x)=θ }为同态 f的核。 在 [1]中已有如下结论 …  相似文献   

3.
设 k 为某一自然数,数列{x}、{y}当n>k 时满足y_n=C_0x_n+C_1x_(n-1)+…+C(?),则称{y_n}为{x_n}的相关数列.设 g_1(t),g_2(t),…,g(t)在 u(t_0)内严格单调且连续,g(t_0)=x_0,i=1,2,…,k.g_i(t)的反函数为 g~(-1)(x),它在 u(x_0)内严格单调且连续,g~(-1)(x_0)=t_0,i=1,2,…,k设F(t)=C_1f〔g_1(t)〕+C_2f〔g_2(t)〕+…+Cf〔g(t)〕,且存在 l,1≤l≤k,使|C_1|>(?)|C_i|.  相似文献   

4.
对於微分方程在高阶奇点附近的积分綫的拓扑結构已为所研究本文研究微分方程在高阶奇点O附近积分线的拓扑結构,設X(x,y)=0,与Y(x,y)=0为不可约的,原点为方程(2)的孤立奇点,根据董金柱的結果方程(2)的奇点指数仅有0或±1或±2。我們首先确定Y(x,y)=0,X(x,y)=0在何种情况之下会出現指数为0或±1,或±2的奇点,其次研究参量a_(ii),b_(ii)在不同情况下,原点附近积分线的拓扑结构,为方便起見,当Y(x,y)=0(或X(x,y)=0)是不退化的或者退化为两不相重的平行线时則称Y=0(或X=0)为正常的,否則Y=0(X=0)称为非正常的(有退化  相似文献   

5.
在变分学最简单问题中,极端曲线共轭点有两种不同的定义,一种是从几何概念出发,另一种则是从分析概念出发。这两个定义并不完全等价,一般说来,几何定义要求更强一些,而分析定义则弱一些,但在一定的条件下,二者仍然是等价的。引理一:设有二阶微分方程 (1)x=f(t,x,x,) 其中的f对于一切(t,x)及|x-a_0|≤a为C_1类函数。则在t_0的某个邻域内及对于|α-α_0|≤b,该方程存在合初始条件x|_(t-t_0)=x_0的解族x=x(t,α),其中参数α的意义是  相似文献   

6.
本文拟给出一阶微分方程的几个可积类型。这些方程只要通过适当的变 量变换,就可以化归为变量可分离方程,从而可积。可以着出,通常意义下的 一阶齐次微分方程、线性微分方程,和伯努里(Bernoulli)微分方程,是本文 所给几个可积微分方程的特例。 本文还定义了广义黎卡提方程(Gene rdized Riccati′s eguation): dy/dx+q(X)y=a_0(y)y~n+a_1(X)y~(n-1)+…+a_(n-1)(X)y+a_n(X),(a_0(X)≠0,n≥2):并提出了一个猜想:广义黎卡提方程一般是不能用初等积分法求解的;同时,作者给出了有关广义黎卡提方程的两个结论: (i)在条件a_n(x)≠0,a_(n-1)(X)=c_(n-1) a_(x) (i= l,2,…,n; C_(n-1)为常数)之下,广义黎卡提方程是可积的。 (ii)如果a_(n-1)(X)=0(0≤j(x)=c_(n-i)a_(n-i-1)(x)(i>j+1),则广义黎卡提方程也是可积的。  相似文献   

7.
命题:设A是适拟微分算子,K_A∈C~∞(X×X),则对任意的u∈D′_0,有A_u∈C~∞(X) 证法一:首先我们来证明对u∈D′_0(X),函数 f(x)=是在C~∞(X)中的。显然对每个固定的x,有K_A(x,y)∈C_0~∞(X)(视为y的函数),故f(x)确为通常意义下的函数。而且当x→x_0。时,将x看成参数的y的函数K_A(x,y)的支集落在一个共同的紧集之内,且在此紧集上对x一致地有D_y~mK_A(x,y)→D_y~aK_A(x,y)即在D_0(x)的拓扑下有K_A(x,y)→K_A(x,y),从而有f(x)→f(x),  相似文献   

8.
关于Banach空间中可微映象的一个注记   总被引:1,自引:1,他引:1  
E是赋范空间 ,Y是Banach空间 ,g∶Ω E→Y是Fr啨chet可微映象 ,这里Ω是开的 ,作者得出 :对任意给定的v ∈Y ,y∈X ,存在u ∈Y ,使得 g(x0 +h(y +Lu) ) =g(x0 ) +h[g′(x0 ) (y+Lu) ]+h(v -h) ,这里L∶Y →X线性连续 ;这一结论在研究二阶微分方程不变流问题中起着重要作用 .  相似文献   

9.
一类二阶中立型方程的振动准则   总被引:4,自引:0,他引:4  
考虑中立型时滞微分方程d~2/dt~2[y(t)+P(t)y(t-τ)]+Q(t)y(t-σ)=0,t≥t_0 (1)其中P,Q∈C([t_0,+∞),R),,τ和σ是非负实数.我们证明了下列定理: 定理1 设0≤P(t)≤1,Q(t)≥0,且∫_(t_0)~(+∞)Q(s)[1-P(s-σ)]ds=+∞则方程(1)的一切解振动. 定理2 设P(t)≡P≥0,∫_(t_0)~(+∞)Q(s)ds=+∞,则方程(1)的一切可微解的导数振动.  相似文献   

10.
§1 引言考虑具有参数向量t=(t_1,t_2,…,t_r)′的数学规划问题(t∈T={t|‖t‖≤a_0 a_1>0}其中g(x,t)=(g_1~-(x,t),g_2(x,t),…,g_m(x,t)),而f(x,t),g_j(xt)(j=1.2,…,m)是x,t(x∈E~n,t∈T)的连续的实值函数。R_t,R_t~*分别为问题P的可行解集合和最优解集合。对于每一个t∈T,我们可以定义一个映象Γ:t→Γ(t),Γ(t)=R_t~*(?)E~n。对于任意的集合S(?)E~n。记 (?) 定义1 设Γ(0)是有界闭集。称映象Γ在点t=0处是上半连续的,如果对于任意给  相似文献   

11.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

12.
设 X 为复的 Banach 空间,L(X)为 X 上的有界线性算子构成的 Banach 代数,F为L(X)到L(X)的线性算子.Matj(?)z Omladi(?)在[1]中证明了下面的定理.定理设 F:L(X)→L(X)是线性、双射且在弱算子拓扑下连续的映射,F 和 F~(-1)均保持一秩投影,则或者(1)存在一个有界的双射线性算子 U:X→X,使 F(A)=UAU~(-1),或者(2)存在一个有界的双射线性算子 U:X′→X,使 F(A)=UA′U~(-1),在此情形下 X 是自反的.下面给出此定理的一个简单证明,并对其条件进行改善,推广该定理.本文中 X、Y 表示 Banach 空间,X′、Y′分别表示它们的对偶空间,任意 x∈X,f∈X′,x(?)f 表示如下定义的 X 上的一秩算子,任意 y∈x,(x(?)f)(3y)=f(y)x.以下两个引理均设 F 为 L(X)到 L(Y)的保持一秩投影的线性映射,且 F 限制在 L(X)中的一秩算子组成的集合上为单射.引理1 若 x、y∈X 为线性无关向量,f∈X′为非零函数且 f(x)=f(y)=1,则存在 u、  相似文献   

13.
极限环论     
第一部分通过鞍点邻域的环线11.进行步骤——首先运用在鞍点邻域有效的变数变换,以建立可能给与微分方程的简单形式。这些简单形式,便于证明微分方程一种通积形式的存在性。这种通积形式,在鞍点邻近的实域内有效,同时也建立这个积分的一些性质。借助于它,我们将得通过鞍点特征线的一条邻近特征线的对应法则。意思指的是,在特征线 C_0上给定一段弧 M_0M_0~1,假设它只包含一个鞍点,又考究交 C_0于 M_0和 M_0~1两点  相似文献   

14.
自从欧拉提出用积分因子法解已解出导数的一阶微分方程后,积分因子的求法到现在为止,仍然是一个尚未完全解决的问题。本文将积分因子问题放在复变函数范围内加以考虑,可以得到一类积分因子的积分表达式。 (一)引言 微分方程 M(x,y)dx N(x,y)dy=0 (1) 其中M(x,y)及N(x,y)不是某个函数对x及y的偏微分,另外我们假M(x,y)及N(x,y)是x及y的连续函数,且有一阶对x及y的连续偏微分。如果有这样的函数μ(x,y)使下式成立,则定义μ为积分因子。 或者写为 (二)方程(2)解的求法 设复变函数 (1)ω(Z)=U(x,y) iV(x,y), 式中Z=x iy 并假定ω(Z)在区域R内解析,则必要条件是U(x,y)及V(x,y)满足  相似文献   

15.
根据全微分方程及积分因子的定义,给出了一阶微分方程M(x,y)dx+N(x,y)dy=0具有μ(x,y)=F(x2+y2)形式的积分因子的充要条件是(N/x)-(M/y)2yM-2xN=(fx2+y2)。  相似文献   

16.
1.设X与Y为两个点集,在它们每一个上面都给定了一个具有完全可加性的测度。设K(x,y,u)为一实值函数,对于每一点x∈X和每一点y∈Y以及每一实数u都有定义,并且对于几乎每一点x∈X都就(y,u)而言适合Carath(?)odory条件:K(x,y,u)对于每一个实数u都是y∈Y的可测函数,并且对于几乎每一个y∈Y都是u的连续函数。这样  相似文献   

17.
设2~X是X的非空子集全体所成之集合,E,F是Φ上的拓扑矢量空间(Φ是实数域R或复数域C),(·,·):F×E→Φ为双线性泛函,X是E的非空子集,S:X→2~E和M,T:X→2~F是集值映象和f:X×X→R.则广义双拟变分不等式问题(GBQVIP)是y∈X,使得y∈S(y)和inf Re(f—w,y—x)+f(y,x)≤0,x∈S(y)和f∈M(y).最近Shih-Tan在X为紧凸集和f≡0的情形下研究了上述GBQVIP解的存在性.本文讨论另一类双拟变分不等式问题,即找y∈X,使得y∈S(y)和(f—w,y—x)+f(y,x)≤0,x∈X和f∈M(y).得出了几个变分不等式和GBQVIP解的存在性定理.这些定理改进和推广了Ding-Tan的结果  相似文献   

18.
探讨二部图的上可嵌入性,证明了如下结果:(1)设G=(X,Y;E),定义G~3=(V(G~3),E(G~3)),其中V(G~3)=V(G),E(G~3)=E(G)∪{e=xy|d_G(x,y):3,x∈X,y∈Y},则G~3是上可嵌入的;(2)设G=(X,Y;E),|X|=|Y|=n(n≥3),对任一对d_G(x,y)=3的x∈X,y∈Y,均有d(x) d(y)≥n 1,则G是上可嵌入的。  相似文献   

19.
本文旨在讨论每个子代数皆为理想的BCI一代数,得到了该类代数的一些充分条件与必要条件。设X是一个BCI—代数,x∈X,若0*(0*x)=x,则称x是一个P—半单元。用SP(X)表示X的全部P—半单元之集,则SP(x)是x的一个子代数。用P(X)表示X的BCK—部分,则P(X)是X的理想子代数,且易知P(X)∩SP(X)={0}。定理1 设X是一个BCI—代数,则SP(X)是X的理想当且仅当对任意x,x′∈P(X),y,y′∈SP(X),由x*y=x′*y′可推出x′=x,y′=y。定理2 设X是一个BCI—代数,若SP(X)是X的一个理想,则X中元可唯一地分解成P(X)中元与SP(X)中元之积。定理3 设X是一个BCI—代数.若M(X)非空,则P(X)≠{0},且SP(X)≠{O}。  相似文献   

20.
设A是一个有单位元1的代数.称映射f:A→A是一个弱可加映射,如果满足对任意的x,y∈A,存在t_(x,y)S_(x,y)∈F使得f(x+y)=t_(x,y)f(x)+s_(x,y)f(y)成立.本文证明了在一定的假设下,如果f是交换映射,则存在λ_0(x)∈A和一个从A到Z(A)的映射λ_1,使得对所有的x∈A有f(x)=λ_0(x)x+λ_1(x).作为应用,刻画了M_n(F)上一类交换的弱可加映射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号