首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 太阳能集热器是太阳能热利用技术的核心部件,其集热性能、集热效率决定了太阳能热利用技术的成熟化发展及适用性推广。本文总结了太阳能热利用的典型方式和应用领域,归纳了集热器的集热原理和类型结构,以提高太阳能集热器集热性能为目标,系统分析了太阳能集热器结构优化、新型集热器吸收材料、太阳能集热器集成相变储能技术和聚光(聚焦)集热技术等方面的最新研究进展及技术动向,进一步指出现阶段太阳能集热器技术研究上的不足,并对下一步的研究提出展望。  相似文献   

2.
针对传统供热供冷模式的不足,给出了一种基于空气集热器的太阳能热泵供热供冷装置,并对其结构、性能等进行了分析和研究.结果表明,该装置在夏季供冷季可比传统空调节电约20%,降低能源费用约50%;在冬季供热季其耗能量约为常规燃煤集中供热的23%,费用约为常规燃煤集中供热的67%.  相似文献   

3.
刘杰  陈安娟  张俊 《科学技术与工程》2022,22(22):9623-9629
太阳能作为清洁可再生能源在供暖领域得到越来越多的应用,集热器作为太阳能热利用的核心部件在供暖方面发挥了重要作用。为了获得新型双通真空管太阳能空气集热器热性能,通过搭建测试平台对其进行试验研究。试验结果表明:新型双通真空管太阳能空气集热器,热性能较优,集热器平均瞬时集热效率为66.7%,与普通空气集热器相比,效率更高;集热器热损较小,最大为2.092 W/(m2·℃)。基于该集热器组成太阳能+电加热联合采暖系统,并对不同天气条件下单独采用该集热器的太阳能供暖系统的运行效果进行初步测试分析,结果表明:单独使用该集热器进行供暖的房间,当太阳辐照强度持续大于250 W/m2,集热器出风温度高于30 ℃,室内温度高于16 ℃的时长可达6~7小时,可满足白天大部分时间段供暖需求,供暖效果较优。研究结果可为太阳能空气集热器供暖系统在农村地区的应用及推广提供参考。  相似文献   

4.
聚焦型太阳能集热器具有热能吸收密度高、运行效率好的优点,是目前国内外太阳能资源开发利用常用的装置。该文总结了抛物面槽式、菲涅尔透镜、菲涅尔反射镜和复合式四种典型聚焦型集热器的特点和研究进展,有助于聚焦型太阳能集热器的进一步优化和推广。  相似文献   

5.
本文分析了太阳能干燥系统的热收集与郑州地区气象条件之间的关系,提出了完成干燥作业指标的最佳干燥时间。计算出了热收集系统在最佳时间内所获得的太阳能辐射日总量和在一定温度下的热流量。  相似文献   

6.
抛物面槽式太阳能集热器热性能测试主要可以分为稳态和动态测试2种方法,依据二者所采用的物理模型,比较它们的应用范围,并且分析各自的优缺点.基于北京延庆实验平台测得的天气和集热器运行数据,运用最小二乘法进行模型的多元回归,得到稳态测试模型和动态测试模型的判定系数分别为0.58和0.96.研究表明:对于稳态测试方法,虽然物理参数少,但测试条件要求极高,只能在特定的实验装置上进行,不适合于实际运行方式下的槽式集热器;而动态测试方法充分考虑集热器的光学响应和热容特性,因此很大程度上降低了测试条件,使现场规模化槽式集热器热性能测试成为可能,是未来标准测试方法的发展趋势.  相似文献   

7.
本文用热力学基本定理分析了太阳能集热器进口温度和流量对其(火用)效率的影响;提出了全天最佳进口温度和全天最大(火用)效率的概念并结合实例作了计算.  相似文献   

8.
Ⅰ型太阳能空气集热器传热性能分析   总被引:1,自引:0,他引:1  
研究了太阳能空气集热器Ⅰ型的传热性能,建立了基于一维假设下的热量传递的数学模型,导出了准静态条件下沿程温度分布、出口温度、全天集热效率的近似解.通过计算,分析了进口温度、工质流速、流道深度对集热器传热性能的影响,计算结果表明全天集热效率随工质流速的增大而增大、随进口温度的升高而急剧下降、随着流道深度的增加,集热效率迅速增大到最大值后逐渐减小.  相似文献   

9.
平板式热管太阳能集热器冬季运行性能研究   总被引:9,自引:0,他引:9  
奚阳 《江西科学》1999,17(3):24
对平板式热管太阳能集热器的冬季运行和热量传递进行了实验和分析研究,给出了该种集热器的冬季运行性能实验参数,证实了平板式热管太阳能集热器完全能够在严冬寒冷条件下正常运行,并具有高抗冻性能和低生产成本,为平板式热管太阳能集热器的推广和应用提供了科学依据。  相似文献   

10.
平板型太阳能集热器效率分析   总被引:1,自引:0,他引:1  
利用传热学理论讨论了平板型太阳能集热器的构造并对平板型太阳能集热器效率的不良因素进行了详细分析 ,最后给出了提高平板型太阳能集热器效率的有效途径  相似文献   

11.
本文概述了近年来国内外在太阳能热利用中的传热分析、太阳能集热器、太阳能热发电系统、太阳房和太阳能干燥等方面的研究和发展状况,对一些新思想、新方法以及新设计和新装置也同时作了介绍。  相似文献   

12.
一种太阳能与空气源双热源热泵系统的性能研究   总被引:1,自引:1,他引:0  
针对单一空气源热泵和单一太阳能热水器的不足,提出太阳能-空气源双热源热泵系统,分析了太阳辐射强度对系统运行的影响.通过太阳能辅助热泵与空气源热泵运行对比实验得出,在整个加热过程中,太阳能辅助热泵系统的系统运行性能和加热水速率均优于空气源热泵系统.太阳能辅助热泵系统的性能系数COP平均值约为单一空气源热泵系统的3倍.在冬季环境温度较低情况下,太阳能辅助热泵相对于空气源热泵具有明显优势.  相似文献   

13.
折流板型太阳能空气集热器数值优化   总被引:2,自引:0,他引:2  
通过数值求解基于雷诺时均的三维定常粘性N-S方程及能量方程,改变结构、特性及运行参数,对折流板型太阳能空气集热器进行了数值优化,模拟结果表明:折流板的引入可有效提高集热效率,同时对于特定尺度的折流板集热器,存在最优分割腔数;增加集热器上部盖板的保温能力可有效提高集热效率,实际使用中推荐保温能力较好的双玻盖板或适当增加空气间层厚度;集热器的热损失以对流散热占主导,辐射散热为次要因素;运行参数如气温、日照强度等对集热器进出口温升影响显著,但对集热效率影响较小。  相似文献   

14.
太阳能热风发电系统的空气集热器试验装置的研制   总被引:2,自引:2,他引:0  
根据太阳能热风发电系统集热器的抽象试验研究模型,研制了该系统的空气集热器试验装置,设计了该装置的集热器箱体、太阳能辐射模拟装置、流量和温度测量系统、辐射强度测量系统以及数据采集系统.利用研究装置进行了变太阳辐射强度、变空气流量以及环境温度对空气集热器的热量影响实验,初步试验验证装置的可行性.  相似文献   

15.
集热器对太阳能喷射制冷系统性能的影响   总被引:3,自引:0,他引:3  
采用寿命期性价比对单、双层盖板平板集热器、全玻璃管、热管真空管及CPC聚焦型集热器对喷射式制冷系统的性能影响进行了评价,并与采用设计工况性价比指标的评价结果进行对比分析。结果表明,寿命期性价比评价指标考虑了太阳辐射与气温变化,比设计工况性价比评价指标更全面、更符合实际情况;双层盖板平板集热器用于太阳能喷射式制冷系统,寿命期性价比最优;CPC聚焦型太阳能集热器热性能最优,在相同制冷量下,所需集热面积最小,可节省安装空间。  相似文献   

16.
传统太阳能热水器通常仅能提供热水,其应用范围受到一定的限制。本文着重阐述了一种新型太阳能集热器,它将太阳能热水器和空气集热器有机地结合在一起,用户在得到热水的同时,亦可获得热空气,达到冬季给室内供暖并且提供新风的效果,最后介绍了此太阳能集热器在建筑中的应用。  相似文献   

17.
本文以沈阳地区某太阳能热水系统设计为题材,从技术指标和经济指标两方面对太阳能热水系统进行分析比较,并得出结论。  相似文献   

18.
提出了一种新型的与建筑一体化太阳能双效集热器系统,该系统有两种工作模式:在冬季的被动采暖工作模式和在其他无需供暖时期的集热水工作模式.针对该新型系统的两种工作模式分别建立了与建筑耦合传热计算模型并进行了模拟计算.模拟结果表明:在冬季被动采暖工作模式下,在外环境平均温度只有2.8℃的给定模拟条件下,系统可以使房间温度最高提高至27.4℃,系统被动采暖性能优异;在自然循环集热水工作模式下,在给定模拟条件下,系统集热效率为54.8%,太阳得热总量为4.32MJ/m2.  相似文献   

19.
综合考虑太阳辐射量和热负荷的变化,以福州地区为例,分别以年最大得热量和年需最小辅助加热量为目标,计算得到不同方位角所对应的集热器最佳倾角.结果表明,正南朝向下,相较于以年最大得热量为目标确定的集热器最佳倾角,以年需最小辅助加热量为目标确定的集热器最佳倾角可节约11.7%的辅助加热量.方位角对集热器最佳倾角也有较大影响.当方位角的绝对值较大时,应采用较小的集热器倾角.  相似文献   

20.
孔伟强 《科学技术与工程》2013,13(14):3867-3872
把太阳能集热器固体部分和流体部分分别列出动态能量平衡方程,经过合并和化简,得到了太阳能集热器整体动态能量平衡方程。该方程中含有物理意义清晰的各个模型参数,可以对太阳能集热器进行评价比较。针对真空管型太阳能集热器入射角影响因子的特殊性,给出了具体的解决方案。然后对真空管型太阳能集热器进行了实验验证。该新型动态测试方法可以在宽松的天气和实验条件下进行测试;相比于稳态测试,大大节省了测试时间,降低了设备与人工成本。实验结果表明,应用该方法可以得到合理稳定的测试结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号