首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequences of three cosmids (90 kilobases) from the Huntington's disease region in chromosome 4p16.3 have been determined. A 30,837 base overlap of DNA sequenced from two individuals was found to contain 72 DNA sequence polymorphisms, an average of 2.3 polymorphisms per kilobase (kb). The assembled 58 kb contig contains 62 Alu repeats, and eleven predicted exons representing at least three expressed genes that encode previously unidentified proteins. Each of these genes is associated with a CpG island. The structure of one of the new genes, hda1-1, has been determined by characterizing cDNAs from a placental library. This gene is expressed in a variety of tissues and may encode a novel housekeeping gene.  相似文献   

2.
Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb-based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation. The relationship between DNA hypermethylation and these histone modifications is not completely understood. Using chromatin immunoprecipitation microarrays (ChIP-chip) in prostate cancer cells compared to normal prostate, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation. Downregulation of the EZH2 histone methyltransferase restored expression of the H3K27triM target genes alone or in synergy with histone deacetylase inhibition, without affecting promoter DNA methylation, and with no effect on the expression of genes silenced by DNA hypermethylation. These data establish EZH2-mediated H3K27triM as a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation.  相似文献   

3.
A genome-wide survey of RAS transformation targets   总被引:28,自引:0,他引:28  
  相似文献   

4.
5.
6.
Chromatin profiling using targeted DNA adenine methyltransferase   总被引:17,自引:0,他引:17  
Chromatin is the highly complex structure consisting of DNA and hundreds of associated proteins. Most chromatin proteins exert their regulatory and structural functions by binding to specific chromosomal loci. Knowledge of the identity of these in vivo target loci is essential for the understanding of the functions and mechanisms of action of chromatin proteins. We report here large-scale mapping of in vivo binding sites of chromatin proteins, using a novel approach based on a combination of targeted DNA methylation and microarray technology. We show that three distinct chromatin proteins in Drosophila melanogaster cells each associate with specific sets of genes. HP1 binds predominantly to pericentric genes and transposable elements. GAGA factor associates with euchromatic genes that are enriched in (GA)n motifs. A Drosophila homolog of Saccharomyces cerevisiae Sir2p is associated with several active genes and is excluded from heterochromatin. High-resolution, genome-wide maps of target loci of chromatin proteins ('chromatin profiles') provide new insights into chromatin structure and gene regulation.  相似文献   

7.
8.
Genome-wide analysis of DNA copy-number changes using cDNA microarrays.   总被引:37,自引:0,他引:37  
Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.  相似文献   

9.
10.
A module map showing conditional activity of expression modules in cancer   总被引:27,自引:0,他引:27  
Segal E  Friedman N  Koller D  Regev A 《Nature genetics》2004,36(10):1090-1098
DNA microarrays are widely used to study changes in gene expression in tumors, but such studies are typically system-specific and do not address the commonalities and variations between different types of tumor. Here we present an integrated analysis of 1,975 published microarrays spanning 22 tumor types. We describe expression profiles in different tumors in terms of the behavior of modules, sets of genes that act in concert to carry out a specific function. Using a simple unified analysis, we extract modules and characterize gene-expression profiles in tumors as a combination of activated and deactivated modules. Activation of some modules is specific to particular types of tumor; for example, a growth-inhibitory module is specifically repressed in acute lymphoblastic leukemias and may underlie the deregulated proliferation in these cancers. Other modules are shared across a diverse set of clinical conditions, suggestive of common tumor progression mechanisms. For example, the bone osteoblastic module spans a variety of tumor types and includes both secreted growth factors and their receptors. Our findings suggest that there is a single mechanism for both primary tumor proliferation and metastasis to bone. Our analysis presents multiple research directions for diagnostic, prognostic and therapeutic studies.  相似文献   

11.
A candidate prostate cancer susceptibility gene at chromosome 17p   总被引:23,自引:0,他引:23  
It is difficult to identify genes that predispose to prostate cancer due to late age at diagnosis, presence of phenocopies within high-risk pedigrees and genetic complexity. A genome-wide scan of large, high-risk pedigrees from Utah has provided evidence for linkage to a locus on chromosome 17p. We carried out positional cloning and mutation screening within the refined interval, identifying a gene, ELAC2, harboring mutations (including a frameshift and a nonconservative missense change) that segregate with prostate cancer in two pedigrees. In addition, two common missense variants in the gene are associated with the occurrence of prostate cancer. ELAC2 is a member of an uncharacterized gene family predicted to encode a metal-dependent hydrolase domain that is conserved among eukaryotes, archaebacteria and eubacteria. The gene product bears amino acid sequence similarity to two better understood protein families, namely the PSO2 (SNM1) DNA interstrand crosslink repair proteins and the 73-kD subunit of mRNA 3' end cleavage and polyadenylation specificity factor (CPSF73).  相似文献   

12.
13.
14.
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.  相似文献   

15.
Mutation of PAX9 is associated with oligodontia   总被引:17,自引:0,他引:17  
Pheromones elicit specific behavioural responses and physiological alterations in recipients of the same species. In mammals, these chemical signals are recognized within the nasal cavity by sensory neurons that express pheromone receptors. In rodents, these receptors are thought to be represented by two large multigene families, comprising the V1r and V2r genes, which encode seven-transmembrane proteins. Although pheromonal effects have been demonstrated in humans, V1R or V2R counterparts of the rodent genes have yet to be characterized.  相似文献   

16.
We describe the successful application of a modified gene-trap approach, the secretory trap, to systematically analyze the functions in vivo of large numbers of genes encoding secreted and membrane proteins. Secretory-trap insertions in embryonic stem cells can be transmitted to the germ line of mice with high efficiency and effectively mutate the target gene. Of 60 insertions analyzed in mice, one-third cause recessive lethal phenotypes affecting various stages of embryonic and postnatal development. Thus, secretory-trap mutagenesis can be used for a genome-wide functional analysis of cell signaling pathways that are critical for normal mammalian development and physiology.  相似文献   

17.
Population choice in mapping genes for complex diseases   总被引:24,自引:0,他引:24  
The difficulty of identifying susceptibility genes for common diseases has polarized geneticists' views on what disease models are appropriate and how best to proceed once high-density genome maps become available. Different disease models have different implications for using linkage or linkage-disequilibrium-based approaches for mapping complex disease genes. We argue that the choice of study population is a critical factor when designing a study, and that genetically simplified isolates are more useful than diverse continental populations under most assumptions.  相似文献   

18.
19.
20.
Widespread aneuploidy revealed by DNA microarray expression profiling   总被引:22,自引:0,他引:22  
Expression profiling using DNA microarrays holds great promise for a variety of research applications, including the systematic characterization of genes discovered by sequencing projects. To demonstrate the general usefulness of this approach, we recently obtained expression profiles for nearly 300 Saccharomyces cerevisiae deletion mutants. Approximately 8% of the mutants profiled exhibited chromosome-wide expression biases, leading to spurious correlations among profiles. Competitive hybridization of genomic DNA from the mutant strains and their isogenic parental wild-type strains showed they were aneuploid for whole chromosomes or chromosomal segments. Expression profile data published by several other laboratories also suggest the use of aneuploid strains. In five separate cases, the extra chromosome harboured a close homologue of the deleted gene; in two cases, a clear growth advantage for cells acquiring the extra chromosome was demonstrated. Our results have implications for interpreting whole-genome expression data, particularly from cells known to suffer genomic instability, such as malignant or immortalized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号