首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
本文将要用到〔3〕中引入的若干概念,为叙述方便,简列于后。集X 到〔0,1〕的一个函数A 称为X 的一个fuzzy 子集;X_1={x∈X|A(x)>0)称为A 的承集。x_λ称为X 上的fuzzy 点;若x_λ(a)={λ当a=x 0 当a≠x a∈X;点x 叫它的承点。x_λ∈A 即0<λ≤A(x);x_λ=y_μ即x=y 且λ=μ;x_λ(?)y_μ即x=y 且λ≤μ。“(?)”是fuzzy 子集A 上的运算:(?)a_λ,b_μ∈A,存在唯一c、∈A,记作a_λ(?)b_μ=c_(?),使当a_(λ′)(?)a_λ,b_(μ′)(?)b_μ时,a_(λ′)(?)b_(μ′)(?)a_λ(?)b_μ,称“(?)”为A 的广义积。当v=min(λ,μ)时,记a_λ(?)b_μ=c_ν为a_λb_μ=c_ν,称为A 的狭隘积,以下仅讨论这种狭隘积。  相似文献   

2.
为了进一步研究极小极大不等式,首先引进了H-空间,将极小极大定理中的闭性条件与凸性条件进一步削弱,利用反证法与有限交性质将Fan-Ha截口定理以及极小极大定理推广为非线性H-空间上更一般的形式设(X,{ΓA}),(Y,{ΓD})为2个HausdorffH-空间,BCX×Y,且满足如下条件a.对每个x∈X,{y∈Y,(x,y)B}为H-凸集或空集.b.对每个y∈Y,{x∈X,(x,y)∈C}为X中的紧闭集.c.对每个x∈X,存在AxX×Y,Ax=Px×Qx.其中Px为X中的紧闭集,Qx为Y中的紧集.d.又假设存在X的非空紧集K,对每个X的有限子集N,存在X的紧子集LN,LNN,使得①对每个y∈Y,LN∩{x∈X,(x,y)∈Az,对所有z∈LN}是零调的;②对每个x∈LN\K,{y∈Y,(x,y)∈Az,对所有z∈LN}{y∈Y,(x,y)∈B};e.对每个x∈K,{y∈Y,(x,y)∈Az,对所有z∈X}=.则存在x0∈X,使得{x0}×YC.利用广义的Fan-Ha截口定理,容易将参考文献[1]中的所有结论推广到H-空间上.  相似文献   

3.
本文讨论 Kakutani定理在对策理论中的应用 .Kakutani定理 设 X是 Rn中的一个有界闭凸集 .对于每一点 x∈X,若 F( x)是 X的一个非空凸子集 ,当 {( x,y) | y∈F( x) }是闭的 ,则在 X中一定有点 x*,使得x*∈F( x*) .此定理中所指的 x*,在对策理论中 ,对于所有的参与者 ,给出了最  相似文献   

4.
通常的分析教科书(如等)关于l′Hospital法则的证明如下: 定理1 设函数f,g在x_0的一个忘我邻域U上处处可以微分,而且,g‘(x)恒不为0;lim f(x)=lim g(x)=0;x→x_0 x→x_0(*)存在(有限或无限)。那么, 证 补充定义f(x_0)=g(x_0)=0。由Cauchy中值定理,对任意的x∈U,  相似文献   

5.
命题:设A是适拟微分算子,K_A∈C~∞(X×X),则对任意的u∈D′_0,有A_u∈C~∞(X) 证法一:首先我们来证明对u∈D′_0(X),函数 f(x)=是在C~∞(X)中的。显然对每个固定的x,有K_A(x,y)∈C_0~∞(X)(视为y的函数),故f(x)确为通常意义下的函数。而且当x→x_0。时,将x看成参数的y的函数K_A(x,y)的支集落在一个共同的紧集之内,且在此紧集上对x一致地有D_y~mK_A(x,y)→D_y~aK_A(x,y)即在D_0(x)的拓扑下有K_A(x,y)→K_A(x,y),从而有f(x)→f(x),  相似文献   

6.
设Δ是一个集合,Δ上满足下述条件的子集族D称为Δ的一个邻域: 1° Δ∈D; 2° 如果X,Y,Z∈D且Z巨X∩Y,那么X∩Y∈D。 邻域D中的理想元素是满足下述条件的x巨D: 1° Δ∈x; 2° X,Y∈x时必有X∩Y∈x; 3° 只要X∈x,XY∈D,就有Y∈x。 所有这样的元素组成的集合称为区域(或论域),记为。对于邻域D,我们还记并设|A|为集合A的基数。 定理 如果|D|<∞,则有。 证明:令我们先证明作这是一个一一对应。事实上,只须证明:对任意的x_1,x_2∈(?),当x_1≠x_2时minx_1≠minx_2。若不然,即X_1≠x_2时,minx_1=minx_2,那么对x_1中任取的X元,存在X′∈minx_1使得。因为X′∈x_2,所以由中元素的定义就有X∈x_2。这就是说。同样可证,于是,φ是一个单射。很明显,φ还是映上的,所以φ是一个一一对应。由此就  相似文献   

7.
[1]中讲述了Blaschke收敛定理。本文把这个定理推广到了赋范线性空间,并在度量空间中得到了类似的结果。§1 定义和引理设(X,d)是一个度量空间。对X中的集序列{A_n},定义其外极限为集合(?)A_n={x|x∈X,存在一串单调上升的自然数{n_k}及x_(n_k)∈A_(n_k),使x=(?)X_n_k};定义{A}的内极限为集合 (?)A_n={x|x∈X,存在自然数n_0~-及x_n∈A_n(n≥N_0~-)使x=(?)_n};若(?)A_n=(?)A_n=A,则称A为{A_n}的极限,或者说{A_n}收敛于A,记为(?)A_n=A。  相似文献   

8.
徐保根  汤友亮  罗茜 《江西科学》2011,29(5):546-549
设G=(V,E)是一个非空图,对于一个函数f∶V(G)∪E(G)→{-1,1},则称f的权重为w(f)=∑x∈V(G)∪E(G)f(x)。若x∈V(G)∪E(G),定义f[x]=∑y∈NT[x]f(y)。如果对所有的x∈V(G)∪E(G)都有f[x]≤1,则称f是图G的一个反全符号控制函数。G的反全符号控制数定义为γ*...  相似文献   

9.
令f_i(x)=f_i(x_1,x_2,…,x_n),i=0,1,…,m,为m 1个定义在区域x≥0上的函数,其中f_0(x)称为目标函数,其余称为约束函数。令R代表点集 此点集以后称为约束集。考虑问题 极大问题:在约束集R上,求目标函数f_0(x)的极大值。连系极大问题,考虑另一问题  相似文献   

10.
本文对GB代数作了进一步研究,所得的主要结果为:定理2 设为GB代数,令G(X)={x_∈X|存在y∈X,使得x=y″},则是群伴代数且(X;*,e>∽.定理4 若是GB代数,令B(X)={x∈X|x″=e},那么为群伴代数且,这里Vx,y∈X,x~y当且仅当x*y,y*x∈B(X).  相似文献   

11.
§5A.deg(X)、mult_xX、Blow—upB_r(X)的定义,投射的影响;例题。令 X~rP~n 为 r 维的簇,X 的次数乃是交点的个数,此交点乃是几乎所有线子空间 L~(n-r)P~n 与 X 相交的交点。(y~s 表 S—维簇)(5.1)定理.对一切子簇 X~rP~n 存在整数 d≥1 以致若 L~(n-r)P~n 为线性空间满足下列:a)L∩X=有限集{x_1,…,x_k)b)_i,x_i 为光滑于 X 上,而 T_(xi),P~n 的2个子空间T_(xi),x,T_(xi),_L 在0处相交。则 k=d。  相似文献   

12.
给出局部p-凸空间(0<p<1)中的p-滴状定理如下:设X为局部完备局部p-凸空间,A(∪)X为局部闭集且B(∪)X为局部闭,有界,p-凸集.若存在一个p-凸吸收集W使W∩(A-B)=(φ),则对于任意x0∈A,存在a∈Dp(x0,B)∩A使得Dp(a,B)∩A={a}.  相似文献   

13.
设2~X是X的非空子集全体所成之集合,E,F是Φ上的拓扑矢量空间(Φ是实数域R或复数域C),(·,·):F×E→Φ为双线性泛函,X是E的非空子集,S:X→2~E和M,T:X→2~F是集值映象和f:X×X→R.则广义双拟变分不等式问题(GBQVIP)是y∈X,使得y∈S(y)和inf Re(f—w,y—x)+f(y,x)≤0,x∈S(y)和f∈M(y).最近Shih-Tan在X为紧凸集和f≡0的情形下研究了上述GBQVIP解的存在性.本文讨论另一类双拟变分不等式问题,即找y∈X,使得y∈S(y)和(f—w,y—x)+f(y,x)≤0,x∈X和f∈M(y).得出了几个变分不等式和GBQVIP解的存在性定理.这些定理改进和推广了Ding-Tan的结果  相似文献   

14.
定理:若函数f(x,y)以及(?)都在区域G内连续,则方程(dx)/(dx)=f(x,y)的解y=(?)(x,x_0,y_0)作为x,x_0,y_0的函数,在它存在范围内有连续编导数(?)。一般教科收都是直接利用编号数定义来求,其过程相当繁琐,今给出一种简单的证法。  相似文献   

15.
我们已经知道存在处处连续而处处不可导的函数,那么是否存在处处有极限而处处不连续的函数呢?本文通过对“处处有左极限的函数的间断点至多可列”这一中心定理的证明,对此作出了否定的回答。 为讨论的方便,先引入左凝点的概念。 定义1、设X是实数域R上的不可列子集,若x∈R,对δ>0,(x-δ,x)∩X都是不可列集,则称x是X的一个左疑点。  相似文献   

16.
~~的核 Sk( x,y)附加了对称性的要求 .本研究在文 [3]的基础上 ,利用最近 Y.S.Han在文 [2 ]给出的恒等逼近的改进定义给出了 Lipschitz函数类 Lipα的一个新刻画 ,是文 [3]结果的推广 ,其主要结果如下 .定理 设算子列 {Sk}k∈ z[2 ]是齐型空间 ( X,ρ,μ)上的恒等逼近 ,Dk=Sk- Sk-1,f是在任有界集上可积的函数 ,0 <α 相似文献   

17.
设R是个半质环,C是R的中心,f_i(x,y)(i=1,2)是关于m个x,n个y的乘积。本文之定理用比较简单的方法证明了下列之命题(Ⅰ)蕴含命题(Ⅱ): (Ⅰ)若对任何x,y∈R,均有f_1(x,y)—f_2(x,y)∈C,则R为交换环。 (Ⅱ)若对任何x,y∈R,均有f_1(x,y) f_2(x,y)∈C,则R为交换环。从而,给出了文献[5]、[8]、[9]若干定理的简短的证明。  相似文献   

18.
局部凸空间中的半连续映射   总被引:2,自引:2,他引:0  
文中得到如下结果: 定理1 设1)X是Z的不空凸子集,K∈2~Z;2)g:X×X→Z使得X_(λg)是u·s·c;3)对于任一x∈X,集Ex是不空凸的,如果X是紧的,则有x∈X使g(x,x)∈K。 定理2 设i)定理1的条件中的设1)、2)被满足,但以g1代g;ii)有紧集M X,使得对于任一x∈X,{y∈M/g1(x,y)∈K}是不空凸的。如果X是拟完备的,则有x∈X使g(x, x)∈K。 定理3 设i)定理1条件中的设1)、2)、3)被满足;ii)X是拟完备闭的。如果有紧集M∈2~Z及α∈X°,使得对于任一x∈X,恒有满足(9)的y∈M。则有x∈X使得g(x,x)∈K。  相似文献   

19.
在线性赋范空间中,应用Ishikawa迭代序列证明了3个不动点定理,这些定理也推广了Pathak HK和Kang SM等人的一些结果。设E是赋范线性空间X的凸子集,T是E到E的自映射,F(T)≠Ф,若对任意x1∈E,迭代序列M(x1,αn,βn,T)收敛于P,则P∈F(T)。又若X是一致凸的Banach空间,E是X的闭凸子集,T:E→E为自映射,对任意x0∈E,定义序列xn+1=(1-cn)xn+cnTxn,则迭代序列│xn│∞b=1若收敛于P,则P∈F(T)。  相似文献   

20.
考虑自治系统: dx_i/dt=f_i(X_1,X_2,…,X_n)(i=1,2,…,n)(1)其中右端函数满足解的存在与唯一性定理条件。定义1 相空间的点y称为点x_0的ω极限点,如果存在时间序列{t_n}当n→+∞,t_n→+∞且y=lim x(t_n,x_0)。n→∞定义2 给定环面体G的截面S(在n—1维超平面上)称为G的拟截割,如果对任意~x∈S,有S_x?S,x∈S_x和δ=δ(x)>0,使得φ((-δ,δ),S_x)为R·中包含x的开集,这里φ(t,P)为方程(1)满足初值x(0)=P的解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号