首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion behavior and mechanism of hot-dip galvanized steel and interstitial-free (IF) substrate with alkaline mud adhesion were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear polarization. The results show that non-uniform corrosion occurs on the galvanized steel and IF substrate during 250 h with the mud adhesion. The corrosion products on the galvanized steel are very loose and porous, which are mainly ZnO, Zn5(OH)8C12·H2O and Zn(OH)2, and Fe-Zn alloy layer with a lower corrosion rate is exposed on the galvanized steel surface; however, the corrosion products on IF substrate are considerably harder and denser, whose compositions of rust are mainly FeOOH and Fe3O4, and several pits appear on their surface. The results of continuous EIS and linear polarization measurements exhibit a corrosion mechanism, that is, under activation control, the charge transfer resistances present different tendencies between the galvanized steel and IF substrate; in addition, the evolution of linear polarization resistances is similar to that of charge transfer resistances. The higher contents of dissolved oxygen and Cl- ions in the mud play an important role in accelerating the corrosion.  相似文献   

2.
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.  相似文献   

3.
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.  相似文献   

4.
 通过采用周浸腐蚀试验方法研究了Q450NQR1高强耐侯钢和Q345钢在浓度为0.01mol/L的亚硫酸氢钠溶液中,经过6,24,48,72和96h周浸腐蚀试验后的耐腐蚀性能,并测试了不同周浸腐蚀时间后试样的腐蚀电位和腐蚀电流密度.研究发现,Q450NQR1钢腐蚀速率随试验时间延长而下降,其表面的锈蚀产物膜在周浸腐蚀试验48h后基本达到稳定.Q450NQR1钢在浸泡各个周期内相对Q345钢均有更好的耐腐蚀性.电化学极化实验证实Q450NQR1钢的腐蚀电流48h后趋于稳定,而Q345B 48h后腐蚀电流密度略有增大,这与周浸腐蚀试验结果是一致的.微观腐蚀形貌及EDS分析认为这是由于Q450NQR1钢中添加的Cu和Cr元素参与了腐蚀成膜,并促使腐蚀产物膜整齐致密.XRD分析结果表明,Q450NQR1钢随时间延长,腐蚀产物中的α-FeOOH含量不断增加,在48h后含量基本稳定,大量α-FeOOH促使了锈层更加致密稳定,从而提高了Q450NQR1试样的耐腐蚀能力.  相似文献   

5.
《矿物冶金与材料学报》2015,22(10):1050-1059
LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffrac-tion (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant ap-pears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance (W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarilyγ-FeOOH and Fe3O4.  相似文献   

6.
The influence of oxide scales on the corrosion behaviors of B510L hot-rolled steel strips was investigated in this study. Focused ion beams and scanning electron microscopy were used to observe the morphologies of oxide scales on the surface and cross sections of the hot-rolled steel. Raman spectroscopy and X-ray diffraction were used for the phase analysis of the oxide scales and corrosion products. The corrosion potential and impedance were measured by anodic polarization and electrochemical impedance spectroscopy. According to the results, oxide scales on the hot-rolled strips mainly comprise iron and iron oxides. The correlation between mass gain and test time follows a power exponential rule in the damp-heat test. The corrosion products are found to be mainly composed of γ-FeOOH, Fe3O4, α-FeOOH, and γ-Fe2O3. The contents of the corrosion products are different on the surfaces of the steels with and without oxide scales. The steel with oxide scales is found to show a higher corrosion resistance and lower corrosion rate.  相似文献   

7.
通过干湿周浸加速腐蚀实验研究了不同稀土含量的耐候钢和对比普碳钢的腐蚀行为及其耐蚀性能.采用失重法测得了各试样的腐蚀率;结果发现,稀土耐候钢的腐蚀率远远低于普碳钢的,不同稀土含量的耐候钢的耐腐蚀性不尽相同.采用电化学交流阻抗技术对带锈钢样的表面锈层结构及电化学反应过程进行了研究,提出在本实验条件下钢电化学腐蚀的等效电路模型,计算出锈层电阻、极化阻抗等表征锈层性能的电化学元件参数值.稀土耐候钢锈层中存在半无限扩散和有限厚度扩散两种过程,有限厚度扩散极化阻抗反映了耐候钢内锈层的保护性能.  相似文献   

8.
利用干湿交替加速腐蚀实验和电化学实验研究了实验钢在模拟工业大气环境下的腐蚀演化行为.结果表明,在腐蚀初期腐蚀速度随循环周期的增加而增大,在后期随循环周期的增加而降低,耐候钢的腐蚀速度与SPA-H钢相当但低于16Mn钢.在腐蚀初期,细晶粒耐候钢比粗晶粒腐蚀速度快,在后期腐蚀速度基本一致.耐候钢锈层分为内外两层,内锈层致密主要由α-FeOOH和少量γ-Fe2O3组成,晶粒尺寸对腐蚀产物的组成影响不大.16Mn钢锈层主要由α-FeOOH,γ-Fe2O3和Fe3O4组成.在腐蚀后期,Cu的作用使耐候钢的耐腐蚀性能优于16Mn钢.电化学实验表明,腐蚀产物促进阴极过程,抑制阳极过程.细晶粒有利于保护性内锈...  相似文献   

9.
通过干湿交替腐蚀实验研究了海洋平台用低碳中锰钢在海洋环境下飞溅区的海水腐蚀行为.通过电子显微镜研究了腐蚀产物的形貌特征,利用电子探针(EPMA)表征了锈层的截面形貌及腐蚀产物中元素的分布,采用X射线衍射仪对腐蚀产物进行了物相分析.结果表明:随着腐蚀时间的延长,腐蚀速率先是快速增加,达到峰值后下降,最后趋于稳定.腐蚀产物结构由疏松多孔状逐渐转化为致密厚实状,锈层对基体的保护能力逐渐增强.在高浓度氯离子环境下,腐蚀产物以γ-Fe OOH为主,并出现了锰的氧化物和铁锰氧化物两种物相,它们促进了腐蚀过程中的电化学反应.  相似文献   

10.
用交流阻抗法、线性极化法等电化学测量法,研究了08CuPVRE和08CuP耐候钢的抗大气腐蚀性能。用重量法测定了腐蚀速率,并将该测量结果与cor-tenA钢和A_3钢作了对比。实验结果表明:铜、磷和稀土元素对提高钢的抗大气腐蚀性能是有利的,08CuPVRE钢具有很好的抗大气腐蚀性能,电化学测量法是研究金属耐蚀性能快速而又有效的方法。  相似文献   

11.
 研究了新型低合金钢Q415NH在模拟南海大气环境下的腐蚀行为及耐蚀机理,为新型耐候钢的研制与开发提供思路,为合金元素Ni对金属耐蚀性的影响提供依据。实验通过0.1% NaHSO3和1% NaCl混合溶液中的周浸腐蚀实验模拟南海大气环境,并检测不同腐蚀周期后的腐蚀速率、腐蚀形貌及腐蚀产物。研究表明,Q415NH在模拟南海大气环境下的耐蚀性优异,其耐蚀机理主要表现为:合金元素的添加改变了低合金钢的微观组织,形成大量细小弥散的贝氏体,影响金属的耐蚀性;由于合金元素的影响,Q415NH具有更高的腐蚀电位与锈层电阻,促进金属阳极氧化,提高金属耐蚀性;Q415NH的锈层更致密、细小、连续,并且具有阳离子选择性,从而阻挡腐蚀性阴离子的侵入,提高锈层的保护性和金属的耐蚀性。  相似文献   

12.
通过腐蚀失重计算、扫描电镜、X射线衍射方法、极化曲线分析等手段,研究了pH值对Q235钢在模拟酸性土壤中腐蚀行为的影响.在模拟酸性土壤环境中,Q235钢的腐蚀速率随土壤pH值升高而降低,经360 h腐蚀后,在pH值为4.0、4.5和5.1的土壤中试样的腐蚀速率分别为0.68、0.48和0.42 mm·a-1.随土壤pH值升高,Q235钢锈层更为致密,其表面蚀坑由窄深型发展变为宽浅型发展.腐蚀产物均为SiO2、α-FeOOH、γ-FeOOH、Fe2 O3及 Fe3 O4,随土壤 pH值升高,腐蚀产物中α-FeOOH/γ-FeOOH质量比升高.极化曲线分析表明,随土壤pH值升高,Q235钢腐蚀电位升高,自腐蚀电流密度降低,试样腐蚀速率减小.  相似文献   

13.
S31603不锈钢具有优异的耐腐蚀性能,广泛应用于化工、沿海设施等领域。在使用过程中,长期经历内部应力、苛刻环境的腐蚀作用。其中,水溶液中的离子对S31603不锈钢的耐腐蚀性能有着重要影响。通过分析锈蚀S31603不锈钢的微观形貌、元素组成及化学状态等,研究非金属离子对其表面锈蚀的影响。结果表明,NO3−、NO2−、SO42−对S31603不锈钢锈蚀起关键作用,Cl-起辅助作用,且锈蚀主要发生在S31603不锈钢与水溶液长期接触的界面。通过对锈蚀表面进行物质鉴定,发现锈蚀表面含有Fe2(SO4)3、FeSO4、CrO2等多种化合物。  相似文献   

14.
The effect of H2S concentration on H2S/CO2 corrosion of API-X60 steel was studied by scanning electron microscopy, a weight-loss method, potentiodynamic polarization tests, and the electrochemical impedance spectroscopy technique. It is found that the cor-rosion process of the steel in an environment where H2S and CO2 coexist at different H2S concentrations is related to the morphological structure and stability of the corrosion product film. With the addition of a small amount of H2S, the size of the anode reaction region is de-creased due to constant adsorption and separation of more FeS sediment or more FeHS+ions on the surface of the steel. Meanwhile, the dou-ble-layer capacitance is diminished with increasing anion adsorption capacity. Therefore, the corrosion process is inhibited. The general cor-rosion rate of the steel rapidly decreases after the addition of a small amount of H2S under the coexistence of H2S and CO2. With a further increase in H2S concentration, certain parts of the corrosion product film become loose and even fall off. Thus, the protection provided by the corrosion product film worsens, and the corrosion rate tends to increase.  相似文献   

15.
Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.  相似文献   

16.
采用电化学极化技术(动电位极化技术、线性极化技术和循环极化技术)和交流阻抗技术研究了不同条件下20Cr9Ni5Co14超高强度不锈钢的电化学腐蚀行为,并采用扫描电镜对极化后腐蚀形貌进行了表征.结果表明,20Cr9Ni5Co14钢在3.5%(质量分数)Na Cl溶液中出现钝化.随着Na Cl浓度的升高,钝化现象消失,而自腐蚀电流密度从8.223×10-7A/cm2减小至1.129×10-7A/cm2;随着p H值的降低,20Cr9Ni5Co14钢的致钝电位和过钝化电位增加.在p H值高于3时,腐蚀产物膜具有良好的耐腐蚀性能而导致反应步骤成为控制步骤.而当p H值降低到2时,腐蚀产物溶解速度很快,金属界面发生腐蚀速率很大,浓差极化成为了控制步骤.对腐蚀形貌研究表明,20Cr9Ni5Co14钢在极化过程中出现点腐蚀,导致了材料的耐腐蚀性能下降.  相似文献   

17.
A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in Qingdao. The rust layer formed on the steel was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption approach, polarization curves, and electrochemical impedance spectroscopy (EIS). The rust formed in Qingdao contains more X-ray amorphous compounds and is more compact than that formed in Wanning. Cr and Cu are enriched in the rust layer near the steel matrix, and the phenomenon is more obvious in Qingdao than in Wanning. The rust layer formed in Qingdao suppresses the anodic and cathodic reaction more remarkably than that formed in Wanning does. The rust layer formed in Qingdao possesses a higher ability to block the permeation of chloride ions than that formed in Wanning does.  相似文献   

18.
以0.1 mol·L-1 NaCl+0.01 mol·L-1 NaHSO3溶液为腐蚀介质,采用干/湿周浸加速腐蚀实验、腐蚀失重、X射线衍射、扫描电镜和能谱分析等方法,研究了湿热工业海洋大气中低碳钢的腐蚀行为.结果表明:实验钢的腐蚀过程均遵循幂函数d=Atn分布规律,钢种不同,常系数A、n的值不同;腐蚀产物主要由非晶物质和少量Fe3 O4、α-FeOOH、β-FeOOH、γ-FeOOH晶体组成.所得锈层可分为主体锈层和界面疏松带两部分,由内至外锈层中Fe、O含量梯度变化很小.Cl-、SO2与水分的长期协同作用会导致内锈层结构变差,而添加稳定性或耐蚀性较高的元素可以改善锈层质量,进而增强钢材的耐腐蚀性能.  相似文献   

19.
E690海洋平台用钢力学性能和海洋大气腐蚀行为   总被引:1,自引:0,他引:1  
以传统的E36海洋平台钢为对比钢,研究三种E690海洋平台钢的组织和力学性能,以及模拟海洋大气环境下的腐蚀行为.通过失重法测得实验钢在不同腐蚀时间下的腐蚀速率,利用扫描电镜和X射线衍射仪观察并测定了锈层的形貌特征和相组成,采用电子背散射衍射技术对实验钢的晶界类型进行分析.结果表明:以贝氏体组织为特征的E690海洋平台钢具有优异的力学性能,-40℃的冲击值超过了200J;晶界类型主要为3°~15°的亚晶界和大于50°的大角度晶界;E690海洋平台钢周浸16 d后的锈层致密且腐蚀速率已趋于稳定,最低腐蚀速率为0.84 mm.a-1,远低于组织为铁素体+珠光体钢的1.4 mm.a-1,实验钢的锈层主要由Fe3O4、α-FeOOH、β-FeOOH及γ-FeOOH四种晶态相和非晶无定形物组成.通过分析得出,热处理工艺和组织构成对材料的初期腐蚀行为有重要影响,而化学成分和锈层自身的致密性对材料后期腐蚀行为起决定作用.  相似文献   

20.
The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated. The chloride threshold values of steels were determined on the basis of corrosion potential(E_(corr)) and polarization resistance(R_p). Moreover, the chloride-induced corrosion behavior of steels was evaluated using electrochemical impedance spectroscopy, cyclic voltammetry, cathodic potentiodynamic polarization, and scanning electron microscopy/energy dispersive X-ray spectroscopy measurements. Alloy steels have higher chloride resistance than low-carbon steel in carbonated and non-carbonated concrete pore solutions. The chloride resistance of alloy steels improves with increasing Cr content. In addition, the chloride resistance of all steels is negatively affected by the carbonation of concrete pore solution, especially for alloy steel with high Cr content in the presence of high chloride content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号