共查询到18条相似文献,搜索用时 125 毫秒
1.
在经典的频繁闭合项集挖掘算法中,如Closet与Closet+,当条件模式数据库很庞大时,频繁项集的数目将会急剧增长,算法的效率会逐步恶化,并且算法挖掘结果的有效性也随着大量冗余模式的产生而下降.本文首先针对传统的FP-tree的算法,给出了一种改进的FP—tree算法,然后在新算法的基础上,提出新的频繁闭合项集挖掘算法,该算法只需把FP-Tree中所有由叶子结点到根结点的路径遍历一遍,就可以得到各项的所有子条件模式基,避免了传统FP-tree算法在同一条路径上向前回溯比较的繁琐.实验表明优化后的算法避免了资源的耗费,减少了频繁闭合项集挖掘的运算开销,大大提高了数据挖掘的效率. 相似文献
2.
基于数组的频繁项目集的挖掘算法 总被引:4,自引:0,他引:4
挖掘关联规则是数据挖掘研究的一个重要方面.然而,目前提出的算法仍存在一些问题,如复杂的数据结构、大量的候选频繁项目集生成等等.本文提出使用了一种简单的数据结构——数组,并提出了基于数组的一种新的频繁项目集的挖掘算法. 相似文献
3.
基因表达数据集与传统事务数据集相比呈现出新的特征,由于其项目数远远大于事务数,使得大量现有的基于项目枚举的频繁闭合模式挖掘算法不再适用.为此提出一种频繁闭合模式挖掘新算法TPclose,使用TP-树(tidset-prefix tree)保存项目的事务集信息.该算法将频繁闭合模式挖掘问题转换成频繁闭合事务集挖掘问题,采取自顶向下分而治之的事务搜索策略,并组合了高效的修剪技术和有效的优化技术.实验表明,TPclose算法普遍快于自底向上事务搜索算法RERⅡ,最高达2个数量级以上. 相似文献
4.
基于数据流的频繁集挖掘 总被引:2,自引:0,他引:2
针对数据流特殊的数据类型,提出了一种新的数据流挖掘算法.该算法引入了一个全新的优化方法,将边界集和频繁产生集结合起来.频繁产生集是频繁集的一种无损简缩表达方式.它所包含的模式数量比频繁集所包含的模式数量小若干数量级.边界集是频繁产生模式和其他模式之间的边界,通过观察边界集的变化可以生成新的频繁产生模式.实验结果表明,该算法的性能有明显的提高. 相似文献
5.
基于候选最大频繁项目集的关联规则挖掘算法 总被引:3,自引:0,他引:3
提高频繁项目集算法的效率是关联规则挖掘研究的一个重点领域 ,就此提出了基于候选最大频繁项目集的关联规则挖掘算法 ,通过实例说明了算法的执行过程 ,并与FP -Tree等其他算法作了比较 相似文献
6.
基于集合运算的频繁集挖掘优化算法 总被引:1,自引:0,他引:1
挖掘关联规则是数据挖掘中一个重要的课题,产生频繁项目集是其中的一个关键步骤。 提出了一种基于集合运算的频繁项目集挖掘算法,并将该算法与经典算法Apriori进行比较。该算法只需要对数据库扫描一遍。实验表明该算法的效率较好。 相似文献
7.
钱进 《江苏技术师范学院学报》2004,10(4):61-64
提高最大频繁项目集挖掘算法的效率是关联规则挖掘研究一个重点领域。本文主要对影响最大频繁项目集挖掘效率的数据分布、搜索策略、支持度计算及剪枝策略等技术进行研究。 相似文献
8.
产生频繁项目集是关联规则挖掘中的一个关键步骤.在对Apriori算法分析的基础上,提出了一种基于集合和位运算的频繁项目集挖掘算法.该算法用位视图表示使用了每个项目的事务,通过对位视图进行位运算来计算每个项目集的支持数,避免了Apriori算法中多次扫描数据库的问题. 相似文献
9.
针对模糊频繁集的挖掘问题,提出一种有效的算法FMF.该算法采用FFP-树结构,将与模糊项目相关的事务的序号保存在树结点中.算法通过直接找到所有包含模糊项集的全部事务来计算该项集的支持度,不必扫描整个数据库,提高了模糊频繁项集挖掘的速度. 相似文献
10.
杨君锐 《长安大学学报(自然科学版)》2004,24(6):102-110
针对关联规则下最大频繁项目集的特性,提出了一种快速挖掘最大频繁项目集的新算法MMFI(miningmaximumfrequentitemsets)。该算法摆脱了传统的经典算法Apriori及其变种情况下的自底向上的搜索策略,利用集合枚举树(set enumerationtree)的变形结构采取了自顶向下的新的搜索方式,并通过其独特的启发式判断策略、候选项目集的生成策略等,大大减少侯选项目集的生成,从而降低了CPU搜索时间,提高了挖掘效率。 相似文献
11.
在数据流闭频繁项集挖掘过程中,常忽略历史模式对挖掘结果的影响,并采用一种结构来标记闭频繁项集的类型,导致算法的效率不高.为此提出一种挖掘数据流时间窗口中闭频繁项集的方法NEWT-moment.该方法能在单遍扫描数据流事务的条件下完整地记录模式信息.同时,NEWT-moment提出的剪枝方法能很好地降低滑动窗口树F-tr... 相似文献
12.
挖掘频繁闭项目集是数据挖掘领域中的一个重要研究方向,人们已提出了许多用于高效地发现大规模数据库中频繁闭项目集的算法,但对其更新维护问题的研究却比较少.在分析了频繁闭项目集更新算法关键技术的基础上,提出一种快速的增量式频繁闭项目集更新算法FUFCIA(fastupdating frquent closed itemsets algorithm),该算法将充分利用先前挖掘过程中所产生的信息来节省发现新的频繁闭项目集的时间开销,降低了候选频繁闭项目集的规模,减少了扫描数据库的次数.最后对该算法进行分析和讨论,并进行试验验证,试验结果表明算法FUFCIA是有效的. 相似文献
13.
NIWei-wei SUNZhi-hui 《武汉大学学报:自然科学英文版》2004,9(5):590-594
Clustering in high-dimensional space is an important domain in data mining. It is the process of discovering groups in a high-dimensional dataset, in such way, that the similarity between the elements of the same cluster is maximum and between different clusters is minimal. Many clustering algorithms are not applicable to high dimensional space for its sparseness and decline properties. Dimensionality reduction is an effective method to solve this problem. The paper proposes a novel clustering algorithm CFSBC based onclosed frequent hemsets derived from association rule mining. which can get the clustering attributes with high efficiency. The algorithm has several advantages. First, it deals effectively with the problem of dimensionality reduction. Second, it is applicable to different kinds of attributes, Third, it is suitable for very large data sets. Experiment shows that the proposed algorithm is effective and efficient 相似文献
14.
许颖梅 《陕西理工学院学报(自然科学版)》2011,27(4)
计算机网络入侵通常具有高频度特性,因此,识别是否正常访问,对数据流中重复元素的挖掘,给出频度指标,是一种重要的依据.提出一种基于数据流频繁模式的改进型AFP算法,该算法采用滑动窗口树技术,单遍扫描数据流及时捕获网络上的最新模式信息,并将该算法应用在入侵检测模型中正常数据和异常数据的在线挖掘.解决了有限存储和无限数据流的矛盾.实验结果表明,该模型有较高的报警率和较低的误报率. 相似文献
15.
基于FP-Tree的最大频繁项目集更新挖掘算法 总被引:4,自引:1,他引:4
发现最大频繁项目集是多种数据挖掘应用中的重要问题.在应用中用户需要调整最小支持度,以发现更有用的最大频繁项目集.为此提出了一种最大频繁项目集更新算法(UMFPA),该算法通过对频繁模式树(FP-Tree)中的频繁项目头表(H Table)增加两个域,从而将减少在数据库不变而最小支持度变化的情况下的更新挖掘最大频繁项目集的费用.实验结果表明,算法在进行最大频繁项目集更新挖掘时具有很好的性能. 相似文献
16.
为了克服传统高维数据挖掘频繁闭合模式算法迭代产生子表,引起算法执行时间长和存储开销大等问题,提出了一种高效挖掘高维数据的频繁闭合模式的算法EMHCP. EMHCP算法采用一种新型结构位图表来压缩存储数据,在仅扫描数据库一次后,建立位图转换表.根据位图转换表来构建混合树结构,采用深度优先的方式和有效的剪枝策略高效挖掘出所有的闭合模式.从而有效地缩小了搜索空间,加快了处理速度.通过在生物数据库应用的实验结果表明, EMHCP算法比已有的CARPENTER和TD-close等算法更为有效. 相似文献
17.
基于数据挖掘的金融时序频繁模式的快速发现 总被引:2,自引:0,他引:2
针对金融时间序列分析中注重快速作出趋势判断的特点,利用数据挖掘的思想和工具,提出一种金融时间序列模式快速发现算法.与传统的预测算法相比较,该算法对数据的分布和平稳性等方面的要求不高,不基于任何假设,能够非常快速地发现时间序列中的频繁模式,经过模式匹配后,可以用于金融时间序列的分析与预测.以实际汇率数据为例,证明了该算法的有效性. 相似文献
18.
针对传统数据流频繁项集计算中效率低、内存消耗大等问题,本文采用并行计算的思想设计了一种基于MapReduce的数据流频繁项集挖掘算法,首先,对进行数据分块压缩和传输,其次,将数据频繁项的计算分布在负载均衡的数据节点,可以有效保证数据的执行效率.最后通过一次调度处理合并各个节点产生的频繁项集并进行合并.理论分析和实验对比结果均表明,该算法对于并行处理数据流频繁项集的统计问题是有效可行的. 相似文献