首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Edgar KM  Wilson PA  Sexton PF  Suganuma Y 《Nature》2007,448(7156):908-911
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.  相似文献   

2.
Thresholds for Cenozoic bipolar glaciation   总被引:1,自引:0,他引:1  
Deconto RM  Pollard D  Wilson PA  Pälike H  Lear CH  Pagani M 《Nature》2008,455(7213):652-656
The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr ago, but have been near or below that level ever since. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records.  相似文献   

3.
Pierrehumbert RT 《Nature》2004,429(6992):646-649
The possibility that the Earth suffered episodes of global glaciation as recently as the Neoproterozoic period, between about 900 and 543 million years ago, has been widely discussed. Termination of such 'hard snowball Earth' climate states has been proposed to proceed from accumulation of carbon dioxide in the atmosphere. Many salient aspects of the snowball scenario depend critically on the threshold of atmospheric carbon dioxide concentrations needed to trigger deglaciation. Here I present simulations with a general circulation model, using elevated carbon dioxide levels to estimate this deglaciation threshold. The model simulates several phenomena that are expected to be significant in a 'snowball Earth' scenario, but which have not been considered in previous studies with less sophisticated models, such as a reduction of vertical temperature gradients in winter, a reduction in summer tropopause height, the effect of snow cover and a reduction in cloud greenhouse effects. In my simulations, the system remains far short of deglaciation even at atmospheric carbon dioxide concentrations of 550 times the present levels (0.2 bar of CO2). I find that at much higher carbon dioxide levels, deglaciation is unlikely unless unknown feedback cycles that are not captured in the model come into effect.  相似文献   

4.
全球变化背景下森林生态系统碳循环及其管理   总被引:2,自引:1,他引:2  
森林生态系统碳循环及其管理是全球变化研究的重要主题,同时也是人类维持全球生态系统的物质、能量平衡和自然资源循环再生的一个重要生态学途径。笔者在分析森林碳循环的基本特征及其与全球变化相互联系的基础上,阐述了碳循环及其管理在全球变化研究中的地位和作用,并提出了森林生态系统碳循环管理的内容、方法、措施及途径。  相似文献   

5.
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.  相似文献   

6.
Merico A  Tyrrell T  Wilson PA 《Nature》2008,452(7190):979-982
One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.  相似文献   

7.
Lourens LJ  Sluijs A  Kroon D  Zachos JC  Thomas E  Röhl U  Bowles J  Raffi I 《Nature》2005,435(7045):1083-1087
At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the approximately 405-kyr and approximately 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.  相似文献   

8.
The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.  相似文献   

9.
Basu P 《Nature》2007,449(7162):522-523
  相似文献   

10.
Civil conflicts are associated with the global climate   总被引:6,自引:0,他引:6  
Hsiang SM  Meng KC  Cane MA 《Nature》2011,476(7361):438-441
It has been proposed that changes in global climate have been responsible for episodes of widespread violence and even the collapse of civilizations. Yet previous studies have not shown that violence can be attributed to the global climate, only that random weather events might be correlated with conflict in some cases. Here we directly associate planetary-scale climate changes with global patterns of civil conflict by examining the dominant interannual mode of the modern climate, the El Ni?o/Southern Oscillation (ENSO). Historians have argued that ENSO may have driven global patterns of civil conflict in the distant past, a hypothesis that we extend to the modern era and test quantitatively. Using data from 1950 to 2004, we show that the probability of new civil conflicts arising throughout the tropics doubles during El Ni?o years relative to La Ni?a years. This result, which indicates that ENSO may have had a role in 21% of all civil conflicts since 1950, is the first demonstration that the stability of modern societies relates strongly to the global climate.  相似文献   

11.
Bains S  Norris RD  Corfield RM  Faul KL 《Nature》2000,407(6801):171-174
The onset of the Palaeocene/Eocene thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5-7 degrees C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing and the pulsed release of approximately 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium--indicative of export palaeoproductivity--at times of maximum global temperatures and peak excursion values of delta13C. The unusually rapid return of delta13C to values similar to those before the methane release and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.  相似文献   

12.
Johnston DT  Macdonald FA  Gill BC  Hoffman PF  Schrag DP 《Nature》2012,483(7389):320-323
Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by δ(13)C in carbonate (δ(13)C(carb)) enriched to more than +5 per mil. Classically, δ(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ(13)C(carb) and δ(13)C in organic carbon (δ(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic δ(13)C(carb) excursions that are decoupled from δ(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present δ(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals.  相似文献   

13.
Old-growth forests as global carbon sinks   总被引:15,自引:0,他引:15  
Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.  相似文献   

14.
The start of the Palaeocene/Eocene thermal maximum--a period of exceptional global warming about 55 million years ago--is marked by a prominent negative carbon isotope excursion that reflects a massive input of 13C-depleted ('light') carbon to the ocean-atmosphere system. It is often assumed that this carbon injection initiated the rapid increase in global surface temperatures and environmental change that characterize the climate perturbation, but the exact sequence of events remains uncertain. Here we present chemical and biotic records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey that have high sediment accumulation rates. We show that the onsets of environmental change (as recorded by the abundant occurrence ('acme') of the dinoflagellate cyst Apectodinium) and of surface-ocean warming (as evidenced by the palaeothermometer TEX86) preceded the light carbon injection by several thousand years. The onset of the Apectodinium acme also precedes the carbon isotope excursion in sections from the southwest Pacific Ocean and the North Sea, indicating that the early onset of environmental change was not confined to the New Jersey shelf. The lag of approximately 3,000 years between the onset of warming in New Jersey shelf waters and the carbon isotope excursion is consistent with the hypothesis that bottom water warming caused the injection of 13C-depleted carbon by triggering the dissociation of submarine methane hydrates, but the cause of the early warming remains uncertain.  相似文献   

15.
A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the V?ring and M?re basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).  相似文献   

16.
全球增温与碳循环   总被引:3,自引:0,他引:3  
全球变暖是地球系统科学领域的热点问题 .全面深入地理解全球碳循环的规律 ,将有助于客观地认识全球增温的原因 .系统地分析了全球碳循环的基本规律 ,评述了各个方面的研究进展 ,指出了研究当中应当注意的关键性问题 ,并且提出了目前探索和研究的重点课题 .  相似文献   

17.
18.
In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusion model in a bounded domain. That is, we prove the existence of the global attractor for the solution.  相似文献   

19.
研究一维双极量子漂移-扩散等温模型,它是由两个非线性四阶抛物方程与一个泊松方程耦合而成的方程组,在Dirichlet边界条件下,利用半离散化方法与熵估计方法证明了其弱解的整体存在性.  相似文献   

20.
The Ediacaran Shuram excursion (SE) is widely regarded as one of the largest carbon isotope (δ13C) negative excursions in Earth history,with carbonate δ13C valu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号