首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Co_3O_4 is a promising high-performance anode for lithium ion batteries(LIBs), but suffers from unsatisfied cyclability originating duo to low electrical conductivity and large volume expansion during charge and discharge process. Herein, we successfully constructed the Co_3O_4 nanoparticles embedded into graphene nanoscrolls(GNSs) as advanced anode for high-performance LIBs with large capacity and exceptional cyclability. The onedimensional(1 D) Co_3O_4/GNSs were synthesized via liquid nitrogen cold quenching of large-size graphene oxide nanosheets and sodium citrate(SC) modified Co_3O_4 nanoparticles, followed by freeze drying and annealing at400 °C for 2 h in nitrogen atmosphere. Benefiting from the interconnected porous network constructed by 1 D Co_3O_4/GNSs for fast electron transfer and rapid ion diffusion, and wrinkled graphene shell for significantly alleviating the huge volume expansion of Co_3O_4 during lithiation and delithiation. The resultant Co_3O_4/GNSs exhibited ultrahigh reversible capacity of 1200 mAh g~(-1) at 0.1 C, outperforming most reported Co_3O_4 anodes.Moreover, they showed high rate capability of 600 m Ah g-1 at 5 C, and outstanding cycling stability with a high capacity retention of 90% after 500 cycles. Therefore, this developed strategy could be extended as an universal and scalable approach for intergrating various metal oxide materials into GNSs for energy storage and conversion applications.  相似文献   

2.
LiNi1/3Co1/3Mn1/3O2 and Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by a co-precipitation method and solid phase synthesis and characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM).The results indicated that the resultant cathode materials with different Ce content all had a good layer structure and high crystallinity.Electrochemical performance testing of the cathode materials showed that the discharge capacity increased with increasing Ce content while the initial reversible capacity attenuation decreased with Ce doping.When the Ce content of the cathode materials is x=0.2,and the current charge and discharge rate is a constant 0.2 C,the discharge capacity maintained 91% of its initial capacity after cycling 50 times.  相似文献   

3.
xLi2MnO3·(1-x)LiNi0.4Co0.2Mn0.4O2(x=0.5) powders were synthesized from co-precipitated spherical metal carbonate,Ni0.2Co0.1Mn0.533(CO3)x.It has been found that the preparation of metal carbonate was si...  相似文献   

4.
Magnetic Co1-xNixFe2O4 nanoparticles (NPs) were successfully synthesized via a solvothermal method using ethylene glycol as solvent.The samples were characterized by X-ray diffraction (XRD),field emiss...  相似文献   

5.
The effect of B sites on the catalytic activities of oxygen evolution reaction(OER)for perovskite oxides La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)(x=0,0.2,0.4,0.6,0.8,1,denoted as LSF,LSCF-28,LSCF-46,LSCF-64,LSCF-82 and LSC,respectively)prepared by a convenient and simple method of electrospinning technique is reported.The prepared La_(0.6)Sr_(0.4)Co_xFe_(1-x)O_(3-δ)catalysts possess almost same crystal structures,similar morphologies(except for the LSC catalyst)and slightly different BET surface areas.Upon the optimization of the Co/Fe atomic ratio,the optimal LSCF-82 catalyst exhibits the OER performance with a low onset potential of 1.541 V,a small Tafel slope of 80.56 mV dec~(-1),a high charge-transfer rate and a large electrochemical surface area in 0.1 M KOH solution.LSCF-82 catalyst exhibits the long-term stability under the catalytic operation condition for 12 h.Such catalytic activity may mainly cause by the synergy of higher catalytic activity Co and lower catalytic activity Fe.Thus,the reasonable optimization of the transition metal composition in B sites for the perovskite oxides is in favor of the improvement of OER performance.  相似文献   

6.
Silica coated(30 wt%) cobalt zinc ferrite(Co1 xZnxFe2O4, x?0, 0.2, 0.3, 0.4, 0.5 and 1) nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction(XRD) reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared(FTIR) spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy(SEM) images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1 xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

7.
A series of BaZr0.2Co0.8-xFexO3-δ materials for oxygen separation were synthesized through a citric and EDTA acid combined complexing method, and their crystal structures, oxygen permeabilities, sintering and sealing abilities were investigated. The results showed that the cubic perovskite structure was formed for materials in the composition range investigated. Oxygen permeation flux and stability, as well as sintering and sealing abilities of the synthesized materials were increased or improved apparently due to the introduction of zirconium. For example, the oxygen permeation flux reached 0.8 mL/min·cm2 when x = 0.2 or 0.3 at 950℃, and a stable time-related oxygen permeation flux was found for the BaZr0.2Co0.3Fe0.5O3-δ membrane at 800℃.  相似文献   

8.
Alkaline treatment using sodium hydroxide was introduced to obtain a hierarchical pore structure in H-ZSM-5 zeolite.Fe-exchanged zeolite catalysts were prepared by impregnation on the original and alkali-treated zeolites,and were evaluated for NOx reduction by NH3,NO oxidation,and NH3 oxidation reactions.The highly dispersed iron species as active sites can be obtained by controlling the pore structure and particle size of zeolite.Therefore,the Fe/ZSM-5 catalyst treated mildly by sodium hydroxide before iron exchange,which contains amounts of highly dispersed Fe species,obtains over80% NOx conversion at a wide temperature range of 250-500℃.  相似文献   

9.
The catalytic effect of metal oxide/alumina whiskers(CeO_2, Mn_3O_4, NiO, Co_3O_4, Fe_2O_3, Cr_2O_3/AW) was evaluated on their ability to drive the nitridation of silicon and to generate mesoporous fibrous silicon networks.Silicon powder with different particles size along with the catalyst was nitridized at 1300 °C for 5 h in nitrogen and nitrogen diluted with 10 vol% ammonia atmospheres. Nitridation degree of silicon up to 99% was recorded using 1.5 wt% CeO_2 and Fe_2O_3 catalysts in nitrogen-ammonia atmosphere. The catalyzed samples contain submicronic silicon nitride fibres with a diameter of 400–500 nm and a length of up to few micrometers. The compressive strength of 46 ± 1 MPa was measured for silicon samples catalyzed with nickel oxide/alumina whiskers and nitridized in N_2/10 vol%NH_3 atmosphere. Porous silicon nitride networks were produced with 45–52% porosity, pore sizes in the range of 370–1200 nm and median pore in the range of 495–1655 nm.  相似文献   

10.
Powders of spinel LiLaxMn2—xO4 were successfully synthesized by the ultrasonic-assisted sol-gel (UASG) method. The structure and properties of LiLaxMn2—xO4 were examined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM), galvanostatic charge-discharge test, and cyclic voltammetry (CV). XRD results show that the La3+ can partially replace Mn3+ in the spinel and the doped materials with La3+ have a larger lattice constant compared with pristine LiMn2O4. FT-IR indicates that the absorption peak of Mn3+−O and Mn4+− O bonds has a red and blue shift with the increase of doping lanthanum in LiLaxMn2—xO4, respectively. The charge-discharge test exhibits that the initial discharge capacity of LiLaxMn2—xO4 drops off, and the capacity retention increases gradually at C/5 discharge rate with the increase of doping lanthanum, and LiLa0.01Mn1.99O4 has a higher discharge capacity and a better cycling performance at 1C discharge rate. CV reveals that the doping La3+ is beneficial to the reversible extraction and intercalation of Li+ ions.  相似文献   

11.
锂离子电池正极材料LiNixCo1 - xO2局域结构的研究   总被引:4,自引:0,他引:4  
对合成制备的LiNixCo1 - xO2正极材料及其稀土金属Ce元素添加改性的正极材料进行了X射线衍射(XRD)和扩展X射线吸收精细结构(EXAFS)表征.结果表明,随着焙烧温度的升高,物相组成趋于单一,晶格趋向完整,800 ℃时完全形成LiNiO2、LiCoO2晶相结构.LiNixCo1 - xO2样品中Ni/Co摩尔比不影响LiNiO2晶相的形成,而只影响其晶相组成;掺杂的稀土金属Ce元素以CeO2状态存在于产物中,CeO2对LiNiO2晶相形成有一定的影响;LiCoO2的焙烧温度不能大于900 ℃,否则Co被氧化为Co3O4;样品中Ni与Co原子的局域结构,除Ni与Co原子相互影响外,掺杂Ce后对它们的局域结构也有较大影响.  相似文献   

12.
A new co-precipitation route was proposed to synthesize LiNi0.8Al0.2−xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8Al0.2−xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8Al0.2−xTixO2 cathode materials are 0.1, 700°C, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8Al0.2−xTixO2.  相似文献   

13.
Perovskite-type B-site Bi-doped ceramic membranes for oxygen separation   总被引:1,自引:0,他引:1  
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized.Cubic perovskite structures were formed for BaBi0.2CoyFe0.8-yO3-δ (y≤0.4) and BaBixCo0.2Fe0.8-xO3-δ(x=0.1-0.5).The materials exhibited considerable high oxygen permeability at high temperature.The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-δ membrane reached about 0.77×10-6 mol/cm2.s under an air/helium oxygen partial pressure gradient at 900℃, which was much higher than that of other bismuth-contained mixed conducting membranes.The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content.The materials also demonstrated excellent reversibility of oxygen adsorption and desorption.Stable time-related oxygen permeation fluxes were found for BaBi0.2Co0.35Fe0.45O3-δ and BaBi0.3Co0.2Fe0.5O3-δ membranes at 875℃.  相似文献   

14.
Crystalline mesoporous metal oxide   总被引:1,自引:0,他引:1  
Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.  相似文献   

15.
综述了近几年来基于Li2MnO3的高比容量二元和三元富锂类锂离子电池正极材料的研究进展.重点讨论了富锂材料zLi2MnO3.(1-z)LiMO2(0相似文献   

16.
WO3–CeO2–TiO2 catalysts for NO (nitrogen monoxide) reduction by ammonia were prepared by a sol–gel method. The catalysts were characterized by BET, XRD, Raman, NH3/NO adsorption and H2-TPR to investigate the relationships among the catalyst composition, structure, redox property, acidity and deNOx activity. WO3–CeO2–TiO2 catalysts show a high activity in a broad temperature range of 200–480 1C. The low-temperature activity of catalysts is sensitive to the catalyst composition especially under low-O2-content atmospheres. It may be related to the synergistic effect between CeOx and WOx in the catalysts. On one hand, the interaction between ceria and tungsten oxide promotes the activation of gaseous oxygen to compensate the lattice oxygen consumed in NH3-SCR (selective catalytic reduction) reaction at low temperatures. Meanwhile, the Br?nsted acid sites mainly arise from tungsten oxides, Lewis acid sites mainly arise from ceria. Both of the Br?nsted and Lewis acid sites facilitate the adsorption of NH3 on catalysts and improve the stability of the adsorbed ammonia species, which are beneficial to the NH3-SCR reaction.  相似文献   

17.
Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6-x)Ti0.4O2(x=0, 0.1, 0.2, 0.3) on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy(SEM), Field emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry(CV) and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions(j=2 A cm-2) in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2coating was discussed. Small addition of IrO2can improve the stability of the RuO2+TiO2mixed oxide, while the electrocatalytic activity for oxygen evolution reaction(OER) is decreased. The shift of redox potentials for Ru0.6Ti0.4O2electrode that is slightly activated with IrO2and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.  相似文献   

18.
(1 ? x)PbZr0.54Ti0.46O3-xKNbO3 (0 ≤ x ≤ 25mol%) (abbreviated as PZT-xKN) piezoelectric ceramics were successfully fabricated by a traditional sintering technique at 1225°C for 30 min. The influence of KNbO3 content on the crystal structure and electrical properties of the PZT-xKN piezoelectric ceramics was studied. Samples with 0 ≤ x ≤ 0.20 show a pure perovskite structure, indicating that all KNbO3 diffused into the crystal lattice of PZT to form a single solid solution in this compositional range. A second Pb3Nb4O13 phase is observed in the PZT-0.25KN sample, showing that the maximum solid solubility of KNbO3 in PZT matrix ceramic is less than 25mol%. Compared with pure PZT piezoelectric ceramics, samples containing KNbO3 have smaller crystal grains. PZT-0.15KN exhibits excellent piezoelectric properties with d 33 = 209 pC/N.  相似文献   

19.
The volatile organic compounds (VOCs) emitted from the sources of industries are a kind of main pol-lutants to the atmosphere. The Environmental Protec-tion Agency (EPA) of the United States lists more than 300 VOC pollutants. 70% of the toxic compounds t…  相似文献   

20.
LiAlxMn2—xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2—xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2—xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L−1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2—xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g−1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2—xO4 with x=0.1 is only about 14% after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号