共查询到17条相似文献,搜索用时 156 毫秒
1.
关于不定方程7x(x+1)(x+2)(x+3)=11y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
主要运用Pell方程、递推序列、同余式及(非)平方剩余等一些初等的证明方法,对不定方程7x(x+1)(x+2)(x+3)=11y(y+1)(y+2)(y+3)的解进行了研究.证明出该不定方程仅有正整数解(x,y)=(8,7),同时得出了这个不定方程的全部整数解,它们是:(0,0),(-3,0),(-2,0),(-1,0),(0,-3),(-3,-3),(-2,-3),(-1,-3),(8,7),(-11,7),(8,-10),(-11,-10). 相似文献
2.
关于不定方程3x(x+1)(x+2)(x+3)=5y(y+1)(y+2)(y+3) 总被引:1,自引:2,他引:1
运用递推序列方法,证明了不定方程3x(x+1)(x+2)(x+3)=5y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(7,6). 相似文献
4.
关于不定方程x(x+1)(x+2)(x+3)=19y(y+1)(y+2)(y+3) 总被引:5,自引:1,他引:5
运用递归序列,同余式的方法证明了不定方程x(x+1)(x+2)(x+3)=19y(y+1)(y+2)(y+3)仅有平凡的整数解,从而更进一步证明了不定方程x2-19(y2+3y+1)=-18仅有整数解是(±x,y)=(1,-1),(1,-2),(1,-3),(1,0),(571,10),(571,-13),(911,13),(911,-16). 相似文献
5.
关于不定方程6x(x+1)(x+2)(x+3)=7y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
主要运用pell方程、递推序列、同余式及(非)平方剩余等一些初等方法,证明了不定方程6x(x+1)(x+2)(x+3)=7y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(25,24).沿用该文相同思路和方法得出关于不定方程mx(x+1)(x+2)(x+3)=ny(y+1)(y+2)(y+3)其中(m,n)=(6,11)和(m,n)=(5,11)时均无正整数解. 相似文献
6.
苟莎莎 《重庆工商大学学报(自然科学版)》2015,32(9):48-52
运用递归序列和平方剩余的方法,证明了不定方程3x(x+1)(x+2)(x+3)=7y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(4,3). 相似文献
7.
关于不定方程x(x+1)(x+2)(x+3)=13y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
主要运用Pell方程、递归数列、同余式及(非)平方剩余等一些初等的证明方法,证明了不定方程x(x+1)(x+2)·(x+3)=13y(y+1)(y+2)(y+3)无正整数解.在证明该结论的过程中,对不定方程进行变形和整理,将其化为Pell方程形式.根据得到的Pell方程整数解的情况,从而得到6类整数解.根据原不定方程的情况舍去了两类,剩余4类整数解.本文逐一对每一类整数解用同余式及平方剩余的证明方法进行讨论和证明,最后得到原不定方程无正整数解的结论.根据本文的结论也能得到这个不定方程的全部整数解,它们都为其平凡解,由于比较简单,故文中没有再给出.同时本文证明了不定方程(x2+ 3x+ 1)2-13y2=-12仅有整数解(x,±y)=(0,1),(-3,1),(-2,1),(-1,1),(-14,43),(11,43).本文进一步完善了此类不定方程的正整数解的研究. 相似文献
8.
运用递推数列的方法,证明了不定方程x(x+1)(x+2)(x+3)=26y(y+1)(y+2)(y+3)无正整数解. 相似文献
9.
关于不定方程x(x 1)(x 2)(x 3)=10y(y 1)(y 2)(y 3) 总被引:1,自引:0,他引:1
郭凤明 《西南师范大学学报(自然科学版)》2013,38(10):013-016
运用递归数列的方法,证明了不定方程
x(x 1)(x 2)(x 3)=10y(y 1)(y 2)(y 3)
无正整数解. 相似文献
10.
主要运用pell方程、递推序列、同余式及(非)平方剩余等一些初等方法,证明了不定方程x(x+1)(x+2)(x+3)=21y(y+1)(y+2)(y+3)和x(x+1)(x+2)(x+3)=23y(y+1)(y+2)(y+3)无正整数解. 相似文献
11.
本文用初等方法证明了不定方程y(y 1)(y 2)(y 3)=nx(x 1)(x 2)(x 3)在n=13~(2k)(k为自然数)时无解. 相似文献
12.
《云南民族大学学报(自然科学版)》2017,(2)
设n1是正整数,利用Pell方程的正整数解的一组恒等式和高次丢番图方程的结果,研究了丢番图方程y(y+1)(y+2)(y+3)=n~2x(x+1)(x+2)(x+3)的正整数解(x,y),分别在2|/n,3|x的情形下和n不同素因数的个数不超过2的情形下,证明了该方程没有正整数解(x,y). 相似文献
13.
郑惠 《四川理工学院学报(自然科学版)》2012,25(2):95-96
运用初等方法对不定方程ax(x+1)(x+2)(x+3)=by(y+1)(y+2)(y+3)的整数解进行了研究,得到了当a=m4,b=m4-1时方程的非负整数解仅有(x,y)=(0,0)。 相似文献
14.
关于不定方程x(x+1)(x+2)(x+3)=15y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
利用递归数列的方法,证明了不定方程x(x+1)(x+2)(x+3)=15y(y+1)(y+2)(y+3)仅有正整数解(x,y)=(3,1),(25,12). 相似文献
15.
关于Diophantine方程nx(x+d)(x+2d)(x+3d)=y(y+d)(y+2d)(y+3d)的一点注记 总被引:1,自引:0,他引:1
乐茂华 《曲靖师范学院学报》2009,28(3)
设d是大于1的正整数.本文运用初等数论方法证明了:如果d的素因数P都适合P=2或者p=±3(mod 8),则方程2x(x+d)(x+2d)(x+3d)=y(y+d)(y+2d)(y+3d))仅有正整数解(x,y)=(4d,5d). 相似文献
16.
段辉明 《重庆工商大学学报(自然科学版)》2005,22(2):191-193
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1.0). 相似文献
17.
关于不定方程x~3±1=Dy~2(D0)所有整数解的求解问题,当D有6k+1形的素因数时,方程的解比较困难;当D=158时,不定方程x~3+1=Dy~2,主要运用Pell方程、递归数列等方法证明了仅有整数解(-1,0),(293,±399). 相似文献