首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑龙江省三江平原湿地土壤碳储量变化   总被引:16,自引:0,他引:16  
为湿地保护和减缓全球气候变化政策的制定提供科学依据,根据对黑龙江省三江平原不同类型和不同开垦年限的湿地土壤有机碳含量、土壤视密度、土层厚度和面积的测量结果,估算土壤碳储量及农业开发50a以来的碳储量变化。对不同土壤类型碳密度随时间的变化,用回归分析的方法,建立土壤碳密度变化模型。结果显示,湿地开发初期20a碳密度降低很快,之后逐渐趋于平稳。三江平原的湿地土壤是一个重要的有机碳库,其有机碳储量为621Mt,该区湿地土壤碳储量随耕地面积的增加而减少。人类活动导致的湿地丧失和退化、水土流失和不合理的耕作措施等是土壤碳储量减少的主要原因。  相似文献   

2.
Fontaine S  Barot S  Barré P  Bdioui N  Mary B  Rumpel C 《Nature》2007,450(7167):277-280
The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.  相似文献   

3.
为了研究三峡水库水位消退过程岸滩土壤呼吸及植被化护岸对土壤碳排放影响,以库区澎溪河段岸滩土壤为研究对象,利用Yaxin—1102便携式光合蒸腾仪系统对库区水退过程中岸滩土壤的呼吸速率进行了测定,并同时测定了土壤呼吸测点的土壤温度(土层深度0、5和10 cm)、土壤含水量、土壤有机碳和p H等土壤环境因子。结果表明:水位消退过程中岸滩近水层土壤呼吸速率表现出明显的时间变化,呈单峰曲线,2月份出现峰值;常年非淹水区土壤呼吸速率变动大于近水层,其峰值晚于近水层1个月。研究发现,长时间淹水可降低土壤呼吸强度即有利于岸滩土壤固持CO_2;但退水时间越长,岸滩土壤呼吸强度增加,接近或高于常年非淹没区。研究表明,岸滩现有植被在护岸同时是否亦能保持土壤碳的低水平排放亟待给予深入探讨。  相似文献   

4.
Acceleration of Greenland ice mass loss in spring 2004   总被引:7,自引:0,他引:7  
Velicogna I  Wahr J 《Nature》2006,443(7109):329-331
In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.  相似文献   

5.
Mack MC  Schuur EA  Bret-Harte MS  Shaver GR  Chapin FS 《Nature》2004,431(7007):440-443
Global warming is predicted to be most pronounced at high latitudes, and observational evidence over the past 25 years suggests that this warming is already under way. One-third of the global soil carbon pool is stored in northern latitudes, so there is considerable interest in understanding how the carbon balance of northern ecosystems will respond to climate warming. Observations of controls over plant productivity in tundra and boreal ecosystems have been used to build a conceptual model of response to warming, where warmer soils and increased decomposition of plant litter increase nutrient availability, which, in turn, stimulates plant production and increases ecosystem carbon storage. Here we present the results of a long-term fertilization experiment in Alaskan tundra, in which increased nutrient availability caused a net ecosystem loss of almost 2,000 grams of carbon per square meter over 20 years. We found that annual aboveground plant production doubled during the experiment. Losses of carbon and nitrogen from deep soil layers, however, were substantial and more than offset the increased carbon and nitrogen storage in plant biomass and litter. Our study suggests that projected release of soil nutrients associated with high-latitude warming may further amplify carbon release from soils, causing a net loss of ecosystem carbon and a positive feedback to climate warming.  相似文献   

6.
Cox PM  Betts RA  Jones CD  Spall SA  Totterdell IJ 《Nature》2000,408(6809):184-187
The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr(-1) is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.  相似文献   

7.
Pall P  Aina T  Stone DA  Stott PA  Nozawa T  Hilberts AG  Lohmann D  Allen MR 《Nature》2011,470(7334):382-385
Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 1766, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a 'wake-up call' to the impacts of climate change at the time, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail to account fully for the complex hydrometeorology associated with flooding. Here we present a multi-step, physically based 'probabilistic event attribution' framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.  相似文献   

8.
土体的物理力学性质在受污染后会发生改变,同时也受到不同初始条件的影响。通过室内土工试验研究不同含水率、颗粒及矿物组成等初始条件下土体受重金属及汽油污染前后的主要物理力学性质变化规律。结果表明:随着初始含水率的增大,污染前后土体的密度均增大,当初始含水率低于最优含水率时,污染前后粉质黏土的密度变化率更大;当土体初始含水率低于最优含水率时,随着初始含水率的增加,污染粉质黏土的塑限增大而液限减小;高于最优含水率后,塑限减小而液限增大;污染前后粉质黏土的压缩系数及其相对变化率随着含水率的增大均呈增大趋势;粉质黏土的黏聚力污染前随着含水率的增大而减小、污染后则随着含水率的增大总体上呈现先减小后增大的趋势;污染前后内摩擦角均随着含水率增大而降低,低含水率时下降速率较缓,大于最优含水率后下降速率增大。土体颗粒及矿物组成对污染物污染效果也有很大的影响,总体而言,细砂相较粉质黏土在同样初始含水率及污染物作用后物理力学性质更加稳定。  相似文献   

9.
Fang C  Smith P  Moncrieff JB  Smith JU 《Nature》2005,433(7021):57-59
Our understanding of the relationship between the decomposition of soil organic matter (SOM) and soil temperature affects our predictions of the impact of climate change on soil-stored carbon. One current opinion is that the decomposition of soil labile carbon is sensitive to temperature variation whereas resistant components are insensitive. The resistant carbon or organic matter in mineral soil is then assumed to be unresponsive to global warming. But the global pattern and magnitude of the predicted future soil carbon stock will mainly rely on the temperature sensitivity of these resistant carbon pools. To investigate this sensitivity, we have incubated soils under changing temperature. Here we report that SOM decomposition or soil basal respiration rate was significantly affected by changes in SOM components associated with soil depth, sampling method and incubation time. We find, however, that the temperature sensitivity for SOM decomposition was not affected, suggesting that the temperature sensitivity for resistant organic matter pools does not differ significantly from that of labile pools, and that both types of SOM will therefore respond similarly to global warming.  相似文献   

10.
Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soils ample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: ( i ) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0---10 to 60---80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ii) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.  相似文献   

11.
在全球变化背景下,土壤有机碳的分解及其温度敏感性在陆地生态系统碳循环中的重要性备受关注。温度敏感性指数(Q10)微小的变化都可能导致未来土壤碳库大小评估的巨大偏差,充分了解土壤有机碳分解温度敏感性的调控机理对预测未来土壤碳变化具有重要意义。笔者对国内外已有研究进行分析,比较培养温度模式、底物质量、物理化学保护和微生物属性对土壤有机碳分解温度敏感性的影响。结果发现:(1)与传统的恒温模式相比,变温培养模式更好地克服了土壤微生物对恒定培养温度的适应性以及不同培养温度下底物消耗不均的缺点,能够更加准确地估算Q10。(2)较多的研究发现难分解有机碳的Q10大于易分解有机碳的Q10,但也有研究发现难分解有机碳的Q10并不比易分解有机碳的Q10高,这主要是由于土壤有机碳库的异质性造成的。(3)团聚体和矿物吸附保护通过改变底物有效性或者反应位点的底物浓度来影响土壤有机碳分解的温度敏感性。(4)微生物的生理特性、群落组成和结构也会对温度敏感性造成影响,温度变化会造成土壤微生物群落组成及其相关生理特征的变化,进一步引起相关功能基因丰度的改变,从而改变有机碳分解的温度敏感性。土壤有机碳分解及其温度敏感性是全球气候变化对碳循环影响研究中很重要的一部分,对它的精确估算有利于完善全球气候变化模型,对准确预测未来全球气候变化具有重要意义。  相似文献   

12.
After the deglaciation (ca. 12000 yr B.P.), climate of the Eastern Fennoscandian territory varied. Changes in both temperature and moisture content lead to vegetative successions and changes in soil formation. Though fossil soils are rare in Eastern Fennoscandia, numerous traces of paleoenvironments are detected in soil profiles. We propose that in most cases climatic, water level, and vegetative changes were relatively rapid. A new soil profile started its development, while the older one remained practically untouched.  相似文献   

13.
在全球变化背景下,土壤有机碳的分解及其温度敏感性在陆地生态系统碳循环中的重要性备受关注。温度敏感性指数(Q10)微小的变化都可能导致未来土壤碳库大小评估的巨大偏差,充分了解土壤有机碳分解温度敏感性的调控机理对预测未来土壤碳变化具有重要意义。笔者对国内外已有研究进行分析,比较培养温度模式、底物质量、物理化学保护和微生物属性对土壤有机碳分解温度敏感性的影响。结果发现:(1)与传统的恒温模式相比,变温培养模式更好地克服了土壤微生物对恒定培养温度的适应性以及不同培养温度下底物消耗不均的缺点,能够更加准确地估算Q10。(2)较多的研究发现难分解有机碳的Q10大于易分解有机碳的Q10,但也有研究发现难分解有机碳的Q10并不比易分解有机碳的Q10高,这主要是由于土壤有机碳库的异质性造成的。(3)团聚体和矿物吸附保护通过改变底物有效性或者反应位点的底物浓度来影响土壤有机碳分解的温度敏感性。(4)微生物的生理特性、群落组成和结构也会对温度敏感性造成影响,温度变化会造成土壤微生物群落组成及其相关生理特征的变化,进一步引起相关功能基因丰度的改变,从而改变有机碳分解的温度敏感性。土壤有机碳分解及其温度敏感性是全球气候变化对碳循环影响研究中很重要的一部分,对它的精确估算有利于完善全球气候变化模型,对准确预测未来全球气候变化具有重要意义。  相似文献   

14.
森林土壤有机碳(SOC)深度分布模式影响其稳定性,一般下层SOC较上层稳定。笔者选取三峡库区秭归县马尾松林地、退耕林地、针阔混交林地等3类森林类型的黄壤、黄棕壤、石灰土、紫色土等4类土壤类型共12种组合,通过典型地段取样法构建研究区SOC密度的深度分布模型,确立模型参数与土壤性质的回归关系,确定土壤传递函数(PTFs)方程式。结果表明:森林类型仅在土壤表层影响SOC密度,土壤类型对SOC密度影响不显著,土壤质地对各深度层SOC密度影响显著; 黏土表层SOC密度比砂质土高,SOC密度随深度下降的速率受土壤质地和森林类型的影响,黏土SOC下降速率高于砂质土; 通过森林类型和土壤质地信息,构建的模型可以预测SOC深度分布模式; 运用构建的模型估算出三峡库区黑沟小流域30 cm土层内SOC储量约为(5 290.32±74.85)t,0~100 cm土层SOC储量约为(8 280.87±120.98)t,0~30 cm土层SOC储量约占整个剖面层的63.89%。  相似文献   

15.
土壤-植物系统重金属镉、锌生物有效性的数学模型评价   总被引:7,自引:0,他引:7  
植物对土壤中重金属的吸收是一个非线性的过程.由于土壤和植物参数测定具有相当难度,经验模型而非理论模型常被用于评价和预测土壤—植物系统中重金属的生物有效性.在已发表的文献中,弗兰德利希模型(Freundlich typemodel)已被一些学者实际应用于预测和评价植物对土壤中重金属的吸收.重金属的生物有效性与土壤中重金属的总量、pH和有机质含量具有极为密切的关系.然而,对同时建立于上述3个参数的重金属生物有效性的数学评价模型的实际应用还未得到验证.为此,在对已发表文献的数据进行分析的基础上,采用多元回归的方法,建立了基于土壤重金属全量、pH和有机质含量为参数的重金属生物有效性评价模型.实际分析表明,虽然模型中各参数的系数因土壤类型、气候和作物种类而不同,两模型均能很好地评价和预测作物对土壤重金属镉的吸收.与弗兰德利希模型相比较,所建数学模型能更精确地评价土壤—植物系统中重金属锌的生物有效性.  相似文献   

16.
林业碳汇提升的主要原理和途径   总被引:1,自引:0,他引:1  
降低大气CO2含量、缓解气候变暖,已成为当今科学界和国际社会广泛关注的前沿热点问题。林业碳汇作为基于自然解决方案实现“碳达峰、碳中和”的一个重要途径,在应对全球气候变化方面发挥着基础性、战略性、独特的作用。林业碳汇不仅是森林碳汇,林产品碳汇也起着不可忽视的重要作用。林业碳汇潜力提升是一个森林生态系统净碳收支平衡和全产业链林产品碳汇的调控过程,主要包括无机碳的植物固定(光合过程、净生产力等)、土壤有机碳的周转与固定(动植物和微生物残体分解与黏土固定)、林产品碳的固持(林产品产量、木材转换效率、种类和使用寿命等)等3方面的调控原理。笔者从森林碳汇和林产品碳汇两个维度阐述了提升林业碳汇的主要原理、方法或途径。提升林业碳汇潜力的主要途径包括:①通过适地适树、适钙适树人工造林,以增加森林面积;②以完善森林经营措施来增加森林净生产力;③利用矿质黏土对有机碳的保护来增加森林土壤碳汇;④提升林产品产量和改进林产品用途以增加其寿命。在全球尺度上,增加森林面积或提高森林净生产力3.4%,或用可再生能源替换薪炭木材,再将薪炭木材用于制造锯材和人造板,都可以连续30 a每年增加1 Pg的碳汇量。减少全球森林火灾面积1/4或增加森林土壤有机碳含量0.23%,也可以增加碳汇1 Pg。此外,林业固碳还有巨大潜力可以挖掘。  相似文献   

17.
Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.  相似文献   

18.
湿地生态系统的碳循环正在成为全球变化与陆地生态系统碳循环研究中的一大热点。湿地在稳定全球气候变化中占有重要地位,其重要性主要表现在湿地土壤是陆地上重要的有机碳库;土壤碳密度高;能够相对长期地储存碳,湿地是多种温室气体的源和汇。全球沿海湿地的分布面积大约为20.3万km^2,碳的积累速度为C(210±20)g/m^2·年,要远远高于泥炭湿地;并且沿海湿地大量存在的SO。。离子阻碍了甲烷的产生量,从而降低了甲烷的排放量。高的碳积累速率和低的甲烷排放量使沿海湿地对大气温室效应的抑制作用更加明显。盐城沿海滩涂芦苇沼泽地虽已列入世界重点湿地名录,但其有机碳循环及其分布特点尚未有资料报道。通过研究沿海滩涂湿地土壤有机碳储存变化及其空间分布规律,从微团聚体水平的有机碳转化与结合机制上研究土壤对有机碳的固定机制,对于了解湿地土壤有机碳的储存特点及其与陆地生态系统碳循环的关系,为评价和保护湿地生态系统提供依据具有重要的科学意义。  相似文献   

19.
Davidson EA  Janssens IA 《Nature》2006,440(7081):165-173
Significantly more carbon is stored in the world's soils--including peatlands, wetlands and permafrost--than is present in the atmosphere. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. If carbon stored belowground is transferred to the atmosphere by a warming-induced acceleration of its decomposition, a positive feedback to climate change would occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback would be negative. Despite much research, a consensus has not yet emerged on the temperature sensitivity of soil carbon decomposition. Unravelling the feedback effect is particularly difficult, because the diverse soil organic compounds exhibit a wide range of kinetic properties, which determine the intrinsic temperature sensitivity of their decomposition. Moreover, several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed 'apparent' temperature sensitivity, and these constraints may, themselves, be sensitive to climate.  相似文献   

20.
Persistence of soil organic matter as an ecosystem property   总被引:65,自引:0,他引:65  
Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号