首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高能球磨法制备Mg_4Nb_2O_9微波介质陶瓷及其表征   总被引:1,自引:0,他引:1  
采用高能球磨法制备粉体.粉体球磨60 h后在900℃保温3 h预烧合成Mg4Nb2O9纯相,研究了由高能球磨所得粉体制备的Mg4Nb2O9陶瓷的相结构、显微组织和微波介电性能随烧结温度的变化关系.X射线衍射检测Mg4Nb2O9陶瓷在1 150~1 200℃烧结过程中有微量的MgNb2O6和Mg5Nb4O15杂相产生,烧结温度高于1 200℃时,样品为Mg4Nb20g纯相;样品收缩率和密度随烧结温度的增大而增加,在1 200℃趋于饱和,分别为13.6和4.22 g/cm3(相对密度96.42%);样品的气孔含量随烧结温度增大降低,晶粒尺寸随烧结温度增大而增大,介电常数和品质因数随烧结温度的增大而增加;1 200℃烧结的样品具有高的致密度、清晰的显微组织,平均晶粒尺寸为3.5 μm,微波介电性能εr=12.6,Q·f=133164 GHz,τ=-56.69×10-6/℃.实验结果表明.高能球磨有效促进球磨后粉体在900℃低温合成Mg4Nb2O9纯相;并降低Mg4Nb2O9陶瓷的烧结温度到1 200℃,改善了陶瓷的谐振频率温度系数,有望成为新一代中温烧结微波介质材料.  相似文献   

2.
采用反应烧结法和传统固相反应法制备G-La2Si2O7陶瓷样品,并探究两种不同制备方法对G-La2Si2O7陶瓷的烧结性能、微观形貌、微波介电性能的影响.结果表明:传统固相法制备的G-La2Si2O7陶瓷性能优于反应烧结法制备材料,反应烧结法制备G-La2Si2O7陶瓷样品最佳的烧结温度为1 430℃,相对密度为90%,微波介电性能为:εr=12.50,Q×f=26 594GHz,τf=-23.99×10-6/℃.传统固相反应方法制备的G-La2Si2O7陶瓷样品最佳的烧结温度为1 415℃,相对密度为96.52%,微波介电性能为:εr=13.327,Q×f=33 900GHz,τf=-34.9×10-6/℃.  相似文献   

3.
采用固相法,制备了Mg4Nb2O9(MN)微波介质陶瓷,研究了V2O5和Li2CO3共掺杂对MgaNb2O9陶瓷烧结行为、相结构、显微结构和微波介电性能的影响.结果表明,采用1.5%V2O5和1.5%Li2CO3共掺杂,能够将Mg4Nb2O9(135O℃)陶瓷的烧结温度降至925℃,且有助于Mg4Nb2O9单相的形成.3.0%(V2O5,Li2CO3)共掺杂样品在925℃空气中烧结5h可获得良好的微波介电性能(介电常数为13.7,品质因数为77975GHz).  相似文献   

4.
采用传统固相合成法制备了铋层状结构CaBi2Nb2O9压电陶瓷,研究了烧结温度对样品相结构、微观形貌、密度和介电、铁电性能的影响。采用X射线衍射衍射仪、电子扫描电镜、拉曼光谱、介电温谱以及电滞回线对制备陶瓷样品进行表征分析和性能测试。结果表明:所有陶瓷样品的相组成均为纯铋层状结构,晶粒呈棒状,各向异性明显,随着烧结温度的升高,晶粒逐渐长大,陶瓷密度先变大后变小。固相法制备的CaBi2Nb2O9压电陶瓷的最佳烧结温度为1 150℃,介电温谱显示CaBi2Nb2O9陶瓷的居里温度为 943 ℃。  相似文献   

5.
采用传统固相法制备Ba(Co(1+x)/3Nb2/3)O3+x/3微波介质陶瓷。系统研究Ba(Co(1+x)/3Nb2/3)O3+x/3中Co非化学计量比对陶瓷的物相组成、显微结构、烧结性能和微波介电性能的影响。结果表明:系统的主晶相为复合钙钛矿型Ba(Co1/3Nb2/3)O3,过多的Co增量与缺量都会引起CoO在高温下熔融挥发,导致富Nb相的生成,从而恶化材料的微波介电性能;而少量的Co缺失不会生成其他杂相,可以促进烧结的致密化,从晶胞参数c/a的角度可证实其B位离子有序排列的提升。x=-0.025的样品具备优良的微波介电性能:εr=31.8,Qf=73 777 GHz(f=6.228 GHz),τf=-15×10-6℃-1。  相似文献   

6.
BaO-TiO2-ZnO-Nb2O5系统微波陶瓷的相转变机制与介电性能   总被引:1,自引:0,他引:1  
对采用传统电子陶瓷工艺制备的BaO-TiO2-ZnO-Nb2O5(BTZN)微波介质陶瓷系统的相转变机制与介电性能进行了研究.XRD分析表明,系统的主晶相为Ba2Ti9O20、BaTi4O9.由Zn2 和Nb5 共同取代Ti4 ,作为施主受主杂质达到电价平衡,形成了BaTi4-xZnx/3Nb2x/3O9和Ba2Ti9-xZnx/3Nb2x/3O20固溶体,显著降低系统的烧结温度,获得优良的介电性能.同时,Nb5 能够抑制在空气气氛中烧结产生的Ti4 还原,防止Ti3 造成的介电性能恶化.BaO-TiO2- ZnO-Nb2O5系统在980℃已经开始大量生成Ba3Ti12Zn7O34相;自1050℃开始形成、并在1110℃大量生成Ba- Ti5O11相;BaTi5O11相的生成对于最终烧结过程中主晶相Ba2Ti9O20的形成起到很关键的作用.1110℃预烧、 1160℃烧结的该系统陶瓷材料的微波介电性能为:εr=37;Q=24 000(10 GHz);τf= 4.5×10-6/℃  相似文献   

7.
通过两步法制备MnO_2改性的MgTiO_3-CaTiO_3(MCT)微波介质陶瓷材料,研究MnO_2对MCT陶瓷的微观结构、烧结特性以及微波介电性能的影响.结果表明,MnO_2不仅能有效抑制杂相的生成,将烧结温度降低15℃,而且能提高MCT陶瓷的致密度,改善MCT陶瓷的微波介电性能.当MnO_2添加量为0. 1%时,1 385℃烧结获得的MCT陶瓷具有最佳介电性能,ε_r=20. 48,Q×f=58,690 GHz,τ_f=-6. 29×10-6/℃.  相似文献   

8.
采用固相法,制备了Mg4Nb2O9微波介质陶瓷,研究了银粉与Mg4Nb2O9陶瓷粉体的化学兼容性和微波介电性能.通过X射线衍射谱(XRD)、扫描电镜(SEM)等分析测试手段,对材料的晶相组成、显微结构进行了研究.采用V2O5、Li2CO3复合掺杂来降低Mg4Nb2O9陶瓷的烧结温度,以便能够与银粉匹配共烧.结果表明,1.5%V2O5和1.5%Li2CO3(VLi)共掺杂可使925℃烧结无第二相生成.该陶瓷良好的整体微波介电性能可用于微波材料.  相似文献   

9.
采用传统固相法在低温下合成CdWO4单相,研究了CdWO4陶瓷的微波介电性能.实验结果表明:普通球磨CdO和WO3混合物10h,在200℃下预烧2h后获得CdWO4纯相粉体;用此粉体制成的素坯在1075~1 200℃烧结,均能得到相对密度比较高的单斜结构CdWO4陶瓷;在1 150℃烧结的CdWO4陶瓷表现出优良的微波介电性能,其中Q×f=41 000GHz,εr=12.8,τf=-14×10-6℃-1.  相似文献   

10.
研究了B2O3对陶瓷的烧结性能及微波介电特性的影响.结果表明B2O3的掺人能使Ca[(Li1/3Nb2/3)0.95Zr0.15]3 δ(CLNZ)陶瓷体系的烧结温度降低160~210℃,谐振频率温度系数τf随B2O3掺入量增加,但烧结温度对其没有明显影响.在990℃.掺入质量分数为1.0 %的B2O3,陶瓷微波介电性能最佳:εr=33.1,Qf=13 700 GHz,τf=-6.8×10-6/℃;而且,掺入2.0%的B2O3,在940℃烧结4 h,能获得介电性能良好的陶瓷,其εr=31.4,Qf=8 700 GHz,τf=-5.2×10-6/℃.  相似文献   

11.
采用固相反应法制备(Mg0.95Ca0.05)TiO3陶瓷,探讨Ni-Zn共掺对(Mg0.95Ca0.05)TiO3陶瓷物相组成、微观结构和介电性能的影响。研究结果表明:复合添加NiO和ZnO,可在一定程度上抑制第二相MgTi2O5的产生,并能有效地降低烧结温度至1 300℃。当NiO和ZnO添加总量(质量分数)为2%,w(NiO)/w(ZnO)为0.5%:1.5%时,陶瓷在1 300℃烧结获得最佳介电性能:介电常数εr=20.39,7.67 GHz时的介电损耗tanδ=2.01×10-4,频率温度系数τf=-1.72×10-6/℃。  相似文献   

12.
采用传统的固相合成法制备Ba3Ti5Nb6-xTaxO28(0≤x≤0.67)微波介质陶瓷,研究了Ta对Ba3Ti5Nb6O28陶瓷结构与微波介电性能的影响.随Ta含量的增加,Ba3Ti5Nb6-xTaxO28陶瓷先为Ba3Ti5Nb6O28单相;当x增大到0.5时,则出现了第二相Ba3Ti4Nb4O21.随Ta含量增加,Ba3Ti5Nb6-xTaxO28陶瓷的介电常数变化较小,Qf值先明显升高后下降,而谐振频率温度系数τf逐渐增大.x=0.16时,获得了介电性能优异的Ba3Ti5Nb6-xTaxO28陶瓷,介电性能为:ε=37.9,Qf=2.8137×104GHz,τf=-6.0×10-6℃-1.  相似文献   

13.
研究了B位Zr4+取代对(Pb0.4Ca0.6) (Mg1/3Nb2/3)O3体系结构及介电性能的影响.研究表明在B位进行Zr取代后,对体系的烧结性能、微波介电性能都有比较明显的影响.随着Zr取代量的增加,体系的体密度,相对介电常数都有了大幅度的提高;Qf0值和τf值也都随着取代量的增加而上升,最后达到饱和.当烧结温度为1260℃(2.5h)时,组成为(Pb0.4Ca0.6){(Mg1/3Nb2/3)0.97Zr0.03}O3的陶瓷样品微波性能为εr=63.2,Qf0=6972GHz,τf=19.8×10-6/℃.  相似文献   

14.
采用传统固相反应法制备x Ca Ti O3-(1-x)La Al O3(0.55≤x≤0.69)(CTLA)陶瓷,研究CTLA陶瓷的物相,微观结构及微波介电性能.结果表明,烧结温度在1 400℃时,陶瓷的微波性能最佳,介电常数在35~47之间,Q×f≥35 000 GHz.随着Ca Ti O3含量的增大,频率温度系数趋零,当x=0.67时,陶瓷具有最佳的微波性能:εr=45,Q×f=36 684 GHz,τf=6.02×10-6/℃.1  相似文献   

15.
研究了制备工艺对Ca( Li1/3 Nb2/3 ) O3-δ基陶瓷介电性能的影响.研究表明,当球磨时间和成形压力分别为4h、150MPa时,陶瓷微波介电性能最佳:εr=31.6,Qf=13100GHz,τf=-9.4ppm/℃.  相似文献   

16.
用固相反应法制备SrBi2Nb2O9陶瓷,研究烧结温度对陶瓷的密度,晶体结构和微观形貌的影响.结果表明,1050℃制备的陶瓷致密性好,晶粒较小,为单一的层状钙钛矿结构,并显示出良好的介电性能.  相似文献   

17.
通过改变微波烧结温度和保温时间,优化Ca( Sm0.5 Nb0.5) O3 (CSN)陶瓷的微波烧结工艺,用X线衍射仪(XRD)、扫描电镜(SEM)和微波网络分析仪等对试样进行表征.从相组成、显微结构及微波介电性能等方面对微波烧结试样与常规烧结试样进行对比分析.结果表明:微波烧结可大幅降低CSN的烧结温度,促进试样的致密化,其物相组成和传统烧结试样无明显差别;微波烧结还可以改善CSN陶瓷的微波介电性能,在1 375℃微波烧结30 min可获得优异的微波介电性能,介电常数(εr)=20.08,品质因数(Q×f)=37.03 THz,谐振频率温度系数(Tf)=-10.2×10-6℃-1.  相似文献   

18.
采用一步法制备了Li_2Mg_(2.95)M_(0.05)Ti O_6(M为Mg,Zn,Co,Ca)型微波介质陶瓷,讨论了掺杂离子种类对陶瓷烧结行为、组成、微观结构和微波介电性能的影响.结果表明:所得陶瓷样品的主晶相为Li_2Mg_3Ti O_6,掺加Mg~(2+)的样品有少量Mg_2Ti O_4杂质相;掺加Ca~(2+)的样品可形成介电常数(ε_r)高达170,温度系数(τ_f)达+800×10~(-6)/℃且能够与主晶相共存形成稳定复合体系的Ca Ti O_3;掺Ca~(2+)的样品在1 370℃保温6 h,可得到介电常数(ε_r)为16.7,品质因数(Q×f)为83 900 GHz,谐振温度系数(τ_f)接近于0×10~(-6)/℃的最佳介电性能的样品.  相似文献   

19.
研究了烧结温度对掺质量分数为0.5 % 的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340 ℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数εr和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340 ℃时,εr和Qf值均达到最大,εr=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数τf=6.5×10-6/℃.  相似文献   

20.
研究了烧结温度对掺质量分数为0.5%的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数rε和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340℃时,rε和Qf值均达到最大,rε=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数fτ=6.5×10-6/℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号