首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
在前人研究的基础上,本文根据沸腾换热、多孔物质内传热传质及毛细管中两相流的理论及实验,提出了烧型多孔表面沸腾换热的改进模型,再据此而得到新的烧结型多孔表面泡态沸腾换热关联式,与实验结果比较,偏差在士30%以内。关联式适用于F-11,F-12,F-22,F-113,F-114。  相似文献   

2.
本文根据多孔表面沸腾换热的改进模型,在文[12]的初步研究的基础上,对烧结型多孔表面沸腾热的优化设计方法进行了进一步的实验研究和理论分析,提出了以δ/d_p作为优化设计的几何特性参数,并指明δ/d_p是沸腾工质、多孔层材料物性及沸腾温差ΔT_B的函数。根据所收集到的实验数据及作者的实验结果,提出了优化设计的概念与方法,并整理出适用于R—11、R—12、R—22、R—113及R—114的大空间核沸腾的优化设计关联式,与实验数据比较,其相对偏离度一般不超过±10%,可供工程设计使用参考。  相似文献   

3.
多孔表面涂层管强化传热机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在表面多孔管制备工艺及传热性能测试的基础上,着重阐述试验数据的计算处理与某些常数的拟合确定,并用壁温测试法检验沸腾温差半经验公式,综合分析沸腾传热强化的原理.  相似文献   

4.
付秋刚 《科学技术与工程》2011,11(10):2206-2210
为了研究重力场中不同吸液芯微热管的传热性能,选用了沟槽式和烧结式两种吸液芯的热管为研究对象,实验测量了两者在不同重力倾角时的温差、热阻和极限功率。实验结果表明:重力倾角小于15°时,沟槽管和烧结管的传热性能受重力的影响很小,重力倾角大于15°时,沟槽管的温差和热阻上升较大,极限功率下降幅度达78%,而烧结管的温差和热阻上升很小,极限功率下降幅度为31%;重力倾角为-30°时,烧结管温差、热阻和极限功率均略有上升,沟槽管则温差、热阻上升,极限功率下降;在对不同工质的研究中,发现水比乙醇和丙酮在有重力影响下更适合作为热管工质。  相似文献   

5.
本文以水为工质,研究了常压下化学腐蚀表面多孔管的池沸腾传热性能.结果表明,该表面多孔管的沸腾传热性能十分优异,在试验的沸腾温差下,表面多孔管的沸腾传热系数达光滑管的近10培.同时综合分析了该管强化沸腾传热的机理,预测了工业应用的前景.  相似文献   

6.
开槽结构多孔芯体强化沸腾传热优化分析   总被引:1,自引:0,他引:1  
开槽改变了多孔芯气液流动结构,不仅改善从核态到膜态沸腾特性,而且使沸腾滞后减轻,沸腾工况更加稳定.为了考察开槽对沸腾传热的影响,根据多孔介质多相流动理论,建立了水平热管多孔芯体沸腾过程一维模型,计算了临界热负荷随开槽密度的变化,确定了最佳开槽密度,分析了开槽尺寸和多孔芯特性对开槽密度的影响,为实验设计提供了理论依据.  相似文献   

7.
设计了一种多孔微槽道复合结构,首先在高温条件下通过烧结将颗粒状铜粉与基体紧密结合在一起,形成具有一定厚度的多孔层结构;再利用线切割在多孔层上加工出具有一定深度的微槽道结构.微槽道结构不仅增加了沸腾时烧结多孔层的表面积,还提供蒸汽通道来保证蒸汽在较小阻力情况下逸出,从而利于气泡脱离;同时在液体剧烈沸腾时可以提供气液两相通道,从而分离气液相对流动.文中还分析了多孔微槽道复合结构关键参数(微槽道数目、微槽道角度、槽宽和槽深等)对沸腾传热效果的影响.实验结果表明,微槽道数目越多,微槽道深度越大,气液界面接触面积越大,强化沸腾传热效果越明显.  相似文献   

8.
采用波长连续可调线偏振光透射光谱技术研究了在0.17T静磁场作用下NaCl溶液的光学特性的改变,同时利用接触角测量仪测量了经不同强度磁场处理20min后的NaCl溶液在硒化锌表面的接触角.实验研究发现,未经磁场处理过的样品和经过磁场处理的样品相比,它们的透射率及接触角呈现明显差异;入射光的偏振方向不同,同一样品的透射率也不同,入射光为P偏振情况下样品的透过率要大于入射光为S偏振情况下的透射率;同一磁场作用下,不同浓度的NaCl溶液的透射率差异明显;不同磁场强度下,磁场越强,NaCl溶液的接触角越小,说明溶液内部分子结构状态发生了变化.本文利用磁场与物质的作用特点简明地解释了经过磁场处理后NaCl溶液的透射光谱和接触角所发生的这些变化.  相似文献   

9.
内螺纹管临界压力区内水的传热特性研究   总被引:13,自引:0,他引:13  
对垂直上升的内螺纹管临界压力区内水的传热特性进行了试验研究,根据试验结果,分别在亚临界部分和超临界部分进行了传热机理分析,得到了垂直上升内螺纹管对流沸腾传热随压力、质量流速及热负荷变化的复杂关系,总结了发生传热恶化时的条件,给出了恶化趋势预报,并给出了能用于工程实际的传热试验关联式,结果表明:虽然在临界压力区内内螺纹管改善传热的特性有所减弱,CHF情况有时在过冷区就发生,但是与光管相比,内螺纹管在临界压力区内仍然能够很好地改善传热,降低壁温。  相似文献   

10.
设计了以烧结法制备铜表面多孔层的工艺过程,并以丙酮作为介质,测试了所制备的多孔表面强化管的传热性能.结果表明,表面多孔管显著地强化了沸腾给热.以0.074~0.046mm紫铜粉和R粉的复合粉烧结多孔管为例,当热通量为2.00×104~6.85×104kJ/(m2·h),沸腾给热系数可达2.23×104~5.28×104kJ/(m2·h·℃),比普通光滑管提高8~24倍;总传热系数可达3800~6236kJ/(m2·h·℃),比普通光滑管提高0.7~6倍  相似文献   

11.
强化传热管内的自然对流沸腾换热   总被引:9,自引:0,他引:9  
对普通缩放管、改型缩放管和光滑管进行了自然对流沸腾换热的实验研究,得到了这三种传热管的沸腾换热系数与热流密度的关系、实验结果表明,普通缩放管和改型缩放管的自然对流沸腾换热系数分别是光滑管的1.06倍和1.25倍,改型缩放管的自然对流沸腾换热系数比普通缩放管提高18%,并分析了改型缩放管比普通缩放管沸腾换热性能好的原因。该改型缩放管特别适用于自然对流沸腾换热的场合。  相似文献   

12.
IntroductionFluid flow and convection heat transfer in porousmedia have received much attention for the pastfive decades due to many important applicationssuch as geothermal energy extraction,catalytic andchemical particle beds,petroleum processing,transp…  相似文献   

13.
14.
对多孔纤维材料中流体渗流的特性进行了分析.根据特定初始条件和边界条件,推导出了温度和压强的解析模型,分析了棉和涤纶两种纤维材质中液体渗流压强随着时间的变化趋势.通过对比多孔材料中流体温度的计算结果与实验结果,验证了模型的有效性和实用性.  相似文献   

15.
对超临界压力下CO2在颗粒直径为0.2~0.28mm的竖直烧结多孔介质圆管中的对流换热进行了实验研究.对热流密度、质量流量、入口压力及流动方向对对流换热规律的影响进行了研究,结果发现:准临界点附近CO2强烈的物性参数变化,尤其是定压比热的变化对对流换热的影响很大;对流换热系数随着流体局部平均温度的升高在准临界点附近达到最大;随着热流密度的增加,对流换热系数出现先增大后减小的趋势;质量流量越大,对流换热越强;流动方向对对流换热的影响不大;随着压力靠近临界压力,CO2的物性参数变化越来越剧烈,对流换热系数在准临界点附近也越来越大,但随着流体温度远离准临界点,压力对对流换热的影响逐渐减小.  相似文献   

16.
对水和水蒸汽汽液两相流体在螺旋轴呈各种倾角放置的螺旋管内强制对流沸腾传热与烧毁特性进行了系统地试验研究,试验中系统及结构参数范围如下:压力:P=0.4~3.0MPa质量流速:G=100~2400kg/m2·s进口水温:T=30~80℃出口干度:x=-0.05~1.2管内壁面热负荷:q=0~540kE/m2试验段结构参数:总长L=6448mm,管内径d=11mm,螺旋直径D=256mm,螺旋升角β=4.27°螺旋管轴向放置倾角:水平位置(0°)、向上倾斜45°(+45°)、垂直向上(+90°)、向下倾斜45°(-45°).共进行了1050个工况的试验.试验结果表明,螺旋管内汽液两相流强制对流沸腾传热可以划分为核态沸腾区、两相流强制对流区、烧毁及烧毁后传热区等3种区域.通过数据处理和分析总结,给出了3区域间转变的边界方程,和3个区域内两相流传热系数的计算公式.根据试验观察和数据结果,对烧毁现象及烧毁点或区域发生的条件及机理进行了深入的分析研究,发现一系列有关现象的规律和特点,指出了其主要影响因素,并给出了烧毁点临界质量干度的预报公式.  相似文献   

17.
为实现对酸露点的准确预测,设计并搭建了一套针对锅炉尾部烟道烟气酸露点测量系统;并在某电厂1 000 MW空预器出口烟道进行就地测量。结果表明:在同一工况下,随着试验温度降低,换热管努赛尔数下降,管壁及腐蚀片积灰与腐蚀程度逐渐加深。进而将所测得的工程酸露点与在同一煤种下利用已有经验公式所得的酸露点进行对比分析。由于存在积灰对酸液的耦合作用,工程酸露点通常比热力学酸露点低约40℃,能够较好地反映工程实际烟气运行情况,对深度余热利用系统的设计和运行有一定的理论指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号