首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Sampedro  I Guerrero 《Nature》1991,353(6340):187-190
In the Drosophila embryo, mutations in the segment polarity gene patched (ptc) cause the replacement of the middle region of each segment by a mirror-image duplication of the remaining structures, including the parasegmental border. This gene, which encodes a transmembrane protein, is initially expressed in a generalized way at blastoderm, but later stops being transcribed in cells expressing the engrailed gene, and even later in cells in the middle of the parasegment. The genes engrailed (en) and wingless (wg) are also segment-polarity genes, and they are expressed in adjacent stripes flanking the parasegment borders in the embryo; in ptc mutants wg expression extends anteriorly and an ectopic stripe of en expression is induced. The suggestion has been made that ptc must be transcribed in a specific subset of cells to prevent en expression anterior to the wg-expressing stripe. Here we report that unrestricted expression of ptc from a heat-shock promoter has no adverse effect on development of Drosophila embryos. The heat-shock construct can also rescue ptc mutants, restoring wg expression to its normal narrow stripe. The ectopic en stripe fails to appear, but the normal one remains unaffected. The results imply that, despite its localized requirement, the restricted expression of ptc does not itself allocate positional information.  相似文献   

2.
P A Lawrence  P Johnston  P Macdonald  G Struhl 《Nature》1987,328(6129):440-442
One of the earliest molecular signs of segmentation in Drosophila embryos is the striped expression of some pair-rule genes during the blastoderm stage. Two of these genes, fushi-tarazu (ftz) and even-skipped (eve) are expressed during this stage in complementary patterns of seven stripes which develop and disappear in concert. Here, we map the cells expressing each of these two pair-rule genes with respect to the 14 stripes of cells expressing the engrailed gene. We find that both ftz and eve generate stripes which have sharp boundaries at the anterior margin, but fade away posteriorly. The anterior boundaries correspond cell by cell with the anterior boundaries of expression of the engrailed gene. We therefore suggest that a key function of early ftz and eve gene activity is the formation of a sharp stable boundary at the anterior margin of each stripe. These boundary lines, rather than the narrowing zonal stripes, would delimit the anterior boundaries of engrailed and other homoeotic genes and thereby subdivide the embryo into parasegments.  相似文献   

3.
4.
During the late cellular blastoderm stage of Drosophila embryo-genesis the segmentation genes engrailed, en, and wingless, wg, become expressed in two series of 14 stripes which will subsequently coincide with the anterior and posterior limits of each parasegment. Previous studies have shown that the establishment of the pattern of en stripes depends upon the activity of the homoeobox-containing pair-rule genes fushi tarazu, ftz and even skipped, eve. Here we show that these two genes also control the spatial expression of wg. Whereas ftz and eve behave as activators of en we find that both genes are required to repress wg expression, so that wg becomes expressed only in the narrow stripes of cells which come to separate the ftz and eve bands at the end of the blastoderm stage. In contrast, we propose that the precise positioning of the en stripes depends upon signals generated in a combinatorial manner by the overlaps between the ftz or eve domains and those of other pair rule genes, specifically odd paired, opa and paired, prd.  相似文献   

5.
P W Ingham  A Martinez-Arias 《Nature》1986,324(6097):592-597
In the Drosophila embryo the establishment and specification of metameric units depends upon the selective activation of the segmentation and the homoeotic selector genes. The former are necessary for establishing the appropriate number of metameric or parasegmental units, whereas the latter control the pathways of differentiation followed by particular parasegments. Classical embryological manipulations have show n that these processes must be closely coordinated during normal development. However, previous studies of pair-rule genes have led to the suggestion that the specification of segmental identity proceeds independently of the establishment of metameres as physical units. These apparently conflicting perspectives can be reconciled by envisaging a common maternally derived positional information system which is independently interpreted by the components of both processes. In the case of the partitioning process, the gap and pair-rule genes would be instrumental in translating this information, whereas the activation of the homeotic genes would be mediated via other intermediaries (see ref. 9 for review). It is difficult to see, however, how such a system could ensure the precise regulation of the tw o types of genes implicit in the final differentiated pattern. This difficulty has led to the suggestion that the segmentation mechanism must define the precise boundaries of selector gene expression. Here we confirm this suggestion and propose that the gene fushi tarazu plays a key role in this process, integrating the processes of metameric partitioning and regional specification in the Drosophila embryo.  相似文献   

6.
During embryogenesis, cells are spatially patterned as a result of highly coordinated and stereotyped morphogenetic events. In the vertebrate embryo, information on laterality is conveyed to the node, and subsequently to the lateral plate mesoderm, by a complex cascade of epigenetic and genetic events, eventually leading to a left-right asymmetric body plan. At the same time, the paraxial mesoderm is patterned along the anterior-posterior axis in metameric units, or somites, in a bilaterally symmetric fashion. Here we characterize a cascade of laterality information in the zebrafish embryo and show that blocking the early steps of this cascade (before it reaches the lateral plate mesoderm) results in random left-right asymmetric somitogenesis. We also uncover a mechanism mediated by retinoic acid signalling that is crucial in buffering the influence of the flow of laterality information on the left-right progression of somite formation, and thus in ensuring bilaterally symmetric somitogenesis.  相似文献   

7.
饥饿的盘基网柄菌进入多细胞发育期后,在细胞疏松结合阶段,gp150分子分布在多细胞体外周;在蛞蝓体阶段,gp150分子把蛞蝓体分成前孢子细胞区和前柄细胞区两个部分,在分化成柄细胞的区域内gp150分子的量逐渐增多.实验结果表明gp150分子与柄细胞分化有密切关系.  相似文献   

8.
Houchmandzadeh B  Wieschaus E  Leibler S 《Nature》2002,415(6873):798-802
During embryonic development, orderly patterns of gene expression eventually assign each cell in the embryo its particular fate. For the anteroposterior axis of the Drosophila embryo, the first step in this process depends on a spatial gradient of the maternal morphogen Bicoid (Bcd). Positional information of this gradient is transmitted to downstream gap genes, each occupying a well defined spatial domain. We determined the precision of the initial process by comparing expression domains in different embryos. Here we show that the Bcd gradient displays a high embryo-to-embryo variability, but that this noise in the positional information is strongly decreased ('filtered') at the level of hunchback (hb) gene expression. In contrast to the Bcd gradient, the hb expression pattern already includes the information about the scale of the embryo. We show that genes known to interact directly with Hb are not responsible for its spatial precision, but that the maternal gene staufen may be crucial.  相似文献   

9.
Grill SW  Gönczy P  Stelzer EH  Hyman AA 《Nature》2001,409(6820):630-633
Cell divisions that create daughter cells of different sizes are crucial for the generation of cell diversity during animal development. In such asymmetric divisions, the mitotic spindle must be asymmetrically positioned at the end of anaphase. The mechanisms by which cell polarity translates to asymmetric spindle positioning remain unclear. Here we examine the nature of the forces governing asymmetric spindle positioning in the single-cell-stage Caenorhabditis elegans embryo. To reveal the forces that act on each spindle pole, we removed the central spindle in living embryos either physically with an ultraviolet laser microbeam, or genetically by RNA-mediated interference of a kinesin. We show that pulling forces external to the spindle act on the two spindle poles. A stronger net force acts on the posterior pole, thereby explaining the overall posterior displacement seen in wild-type embryos. We also show that the net force acting on each spindle pole is under control of the par genes that are required for cell polarity along the anterior-posterior embryonic axis. Finally, we discuss simple mathematical models that describe the main features of spindle pole behaviour. Our work suggests a mechanism for generating asymmetry in spindle positioning by varying the net pulling force that acts on each spindle pole, thus allowing for the generation of daughter cells with different sizes.  相似文献   

10.
Organogenesis is dependent on the formation of distinct cell types within the embryo. Important to this process are the hox genes, which are believed to confer positional identities to cells along the anteroposterior axis. Here, we have identified the caudal-related gene cdx4 as the locus mutated in kugelig (kgg), a zebrafish mutant with an early defect in haematopoiesis that is associated with abnormal anteroposterior patterning and aberrant hox gene expression. The blood deficiency in kgg embryos can be rescued by overexpressing hoxb7a or hoxa9a but not hoxb8a, indicating that the haematopoietic defect results from perturbations in specific hox genes. Furthermore, the haematopoietic defect in kgg mutants is not rescued by scl overexpression, suggesting that cdx4 and hox genes act to make the posterior mesoderm competent for blood development. Overexpression of cdx4 during zebrafish development or in mouse embryonic stem cells induces blood formation and alters hox gene expression. Taken together, these findings demonstrate that cdx4 regulates hox genes and is necessary for the specification of haematopoietic cell fate during vertebrate embryogenesis.  相似文献   

11.
Payre F  Vincent A  Carreno S 《Nature》1999,400(6741):271-275
  相似文献   

12.
13.
Nodal signalling in the epiblast patterns the early mouse embryo.   总被引:2,自引:0,他引:2  
Shortly after implantation the mouse embryo comprises three tissue layers. The founder tissue of the embryo proper, the epiblast, forms a radially symmetric cup of epithelial cells that grows in close apposition to the extra-embryonic ectoderm and the visceral endoderm. This simple cylindrical structure exhibits a distinct molecular pattern along its proximal-distal axis. The anterior-posterior axis of the embryo is positioned later by coordinated cell movements that rotate the pre-existing proximal-distal axis. The transforming growth factor-beta family member Nodal is known to be required for formation of the anterior-posterior axis. Here we show that signals from the epiblast are responsible for the initiation of proximal-distal polarity. Nodal acts to promote posterior cell fates in the epiblast and to maintain molecular pattern in the adjacent extra-embryonic ectoderm. Both of these functions are independent of Smad2. Moreover, Nodal signals from the epiblast also pattern the visceral endoderm by activating the Smad2-dependent pathway required for specification of anterior identity in overlying epiblast cells. Our experiments show that proximal-distal and subsequent anterior-posterior polarity of the pregastrulation embryo result from reciprocal cell-cell interactions between the epiblast and the two extra-embryonic tissues.  相似文献   

14.
The androgenetic embyronic stem (aES) cells are useful models in studying the effects of imprinted genes on pluripotency maintaining and embryo development. The expression patterns of imprinted genes are significantly different between uniparental derived aES cells and zygote-derived embryonic stem (ES) cells, therefore, the imprinting related cell pluripotency needs further exploitation. Several approaches have been applied in generation of androgenetic embryos and derivation of aES cell lines. Here, we describe a method to generate androgenetic embryos by injecting two mature sperms into one enucleated oocyte. Then these androgenetic embryos were treated with a histone deacetylase inhibitor: m-carboxycinnamic acid bishydroxamide (CBHA). Further, aES cell lines were successfully derived from these treated androgenetic embryos at blastocyst stage. The CBHA could improve not only the quality of androgenetic embryos, but also the efficiencies of aES (CaES) cells derivation and chimeric mice generation. The imprinted gene expression pattern in the CBHA treated embryo-derived aES (CaES) cells was also highly similar to that of zygote-derived ES cells.  相似文献   

15.
P H Taghert  C Q Doe  C S Goodman 《Nature》1984,307(5947):163-165
The embryonic development of the central nervous system (CNS) involves the generation of an enormous diversity of cellular types arranged and interconnected in a remarkably precise pattern. In each hemisegment of the grasshopper embryo, the ectoderm generates a stereotyped pattern of 30 neuronal precursor cells, called neuroblasts (Fig. 1). Each of these stem cells makes a stereotyped contribution of 6-100 progeny to the approximately 1,000 different neurones, each cell identifiable according to its unique morphology, physiology and biochemistry. What are the contributions of cell interactions and cell lineage to the generation of this diversity and specificity of identified neurones in the grasshopper CNS? Here we report on cell ablations with a laser microbeam at different stages of development. Our results suggest the importance of cell-cell interactions in the determination of ectodermal cells to become identified neuroblasts. However, once a neuroblast begins to divide, then cell lineage appears to play an important role in the determination of its stereotyped family of neuronal progeny. Furthermore, cell-specific interactions continue to play an important role as neurones, according to their mitotic ancestry, recognize and interact with other differentiating neurones in their environment.  相似文献   

16.
17.
P Casalbore  E Agostini  S Alemà  G Falcone  F Tatò 《Nature》1987,326(6109):188-190
A number of studies have shown that full transformation of non-established rodent fibroblasts can be efficiently achieved in vitro by the concerted action of two oncogenes belonging to different complementation groups. Extension of the two-genes carcinogenesis model to other differentiated cell types, presumably endowed with different controls of growth, is desirable for a better understanding of questions such as the host cell selectivity of oncogene action. A recent report claimed that cooperation between two oncogenes, v-myc and v-mil, is required to achieve transformation of chicken embryo neuroretina cells, which are characterized by a limited growth capacity in monolayer culture. Here we present evidence that the v-myc oncogene alone is sufficient to induce growth transformation of glial and neuronal precursor cell types from chick neuroretina. We also report that induction of transformation by v-myc is accompanied by faithful preservation of some of the differentiated functions of the chick cells.  相似文献   

18.
19.
The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior-posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号