首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
本文构造出了几种常见的一阶微分方程积分因子的一般形式,极大的方便了方程的求解。  相似文献   

2.
有关一阶微分方程积分因子的计算   总被引:5,自引:0,他引:5  
给出了一阶微分方程f1(x y)dx f2(x y)dy=0的积分因子的形式及一阶微分方程M(x,y)dx N(x,y)dy=0具有形如U(x,y)=F(x^ay^b)、U(x,y)=G(x^a y^b)两种形式的积分因子的充要条件。  相似文献   

3.
本文构造出了几种常见的一阶微分方程积分因子的一般形式,极大的方便了方程的求解。  相似文献   

4.
一阶微分方程M(x,y)dx+N(x,y)dy=0不是全微分方程时,寻找它的积分因子成为求解方程的关键,但又是比较棘手的问题。针对这一情况,本文通过对方程的积分因子存在的充要条件定理的证明,利用定理结论求解积分因子,进而求出其通解,是一种行之有效又直观方便的方法,从而达到化难为易的目的,而且定理结论具有一般性,可以进行推广,使求积分因子时不再盲目,变得有规可循。  相似文献   

5.
讨论了一阶微分方程积分因子的存在性问题。给出了一类一阶微分方程存在齐次多项式积分因子的一组充分必要条件,并且给出具体例子说明了其应用,丰富了微分方程的解法。  相似文献   

6.
证明了一阶齐次微分方程积分因子的存在性,并由此将全平面分成2个部分,在积分因子的存在域上给出其积分因子,从而在此域上得到通积分,在积分因子的不存在域上给出了其特解.同时指出了除奇点(0,0)外,这些特解必是径向直线解,从而将该类方程的积分曲线集合扩充到了整个平面.  相似文献   

7.
微分方程积分因子法及其应用   总被引:1,自引:0,他引:1  
邵丽梅 《科技信息》2010,(36):I0087-I0087
本文研究如何直接地、有效地求出其积分因子的方法,并且给出与求解积分因子有关的几个结论,从而扩大了利用解恰当方程的方法求解常微分方程的解的范围。文章给出了几种特殊类型的积分因子的求法及其在微分方程中的应用,提供了一种新的解决中学数学问题的途径。  相似文献   

8.
应用全微积分方程的充要条件给出了求一阶微分方程积分困于较为一般的方法.  相似文献   

9.
积分因子法是求解一阶常微分方程的一个极其重要的方法。给出了一类微分方程乘积型积分因子的计算公式,推广了相关文献的结果。  相似文献   

10.
采用积分因子法将一阶微分方程转化成全微分方程是求解常微分方程的一个重要手段。为了得到方程的积分因子,需要求解积分因子所满足的偏微分方程。写出偏微分方程所对应的特征方程,从而将求解积分因子转化成为求解常微分方程的首次积分。为了简化首次积分的计算,本文给出了一些特征方程有关条件的限制,并利用比例性质对特征方程变形,得到一些特殊的积分因子,从而使常微分方程转化为全微分方程。  相似文献   

11.
一类新复合型积分因子的存在定理及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
给出M(x,y)dx+N(x,y)dy=0复合类型积分因子的定义,得到了复合类型积分因子存在的充要条件和计算公式,为解决某些非全微分方程求解问题提供了更加快捷的工具,避免了传统求解方法的繁琐及盲目。  相似文献   

12.
讨论了一阶常微分方程M(x,y)dx+N(x,y)dy=0的积分因子问题,给出了方程具有形如f(x^αy^β)g(ax^t+by^s),a,b,α,β,t,s∈R的积分因子的充要条件,引入了一种新的求上述积分因子的方法,并通过实例加以应用。  相似文献   

13.
积分因子法是求解一阶常微分方程的一个极其重要的方法.但是在通常情况下,积分因子的寻求比较困难.通过定义常微分方程的乘积型积分因子,得到了乘积型积分因子存在的充要条件和计算公式.  相似文献   

14.
讨论了一阶常微分方程M(x,y)dx+N(x,y)dy=0的积分因子问题,给出了方程具有形如f(x^αy^β)g(ax^t+by^s),a,b,α,β,t,s∈R的积分因子的充要条件,引入了一种新的求上述积分因子的方法,并通过实例加以应用。  相似文献   

15.
利用变量变换的方法,得到了一类Riccati方程的一个新的可积性条件及其在这些条件下的通积分。此结果包含了已有文献中有关Riccati方程可积性的一大批结论。  相似文献   

16.
有初等解法的微分方程是有限的,对一般的二阶变系数线性微分方程而言,没有一般的初等解法,文中讨论了系数满足一定条件下微分方程的初等解法,并举例说明它的一些简单应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号