首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以3种不同粒径的偏高岭土样品为考察对象,在30℃~110℃范围内研究了偏高岭土对油井水泥强度的影响。研究结果表明,偏高岭土的粒径、掺量以及养护温度均会对油井水泥的强度产生影响。在油井水泥中掺入偏高岭土,应注意其适合的粒径、掺量及温度的使用范围,超出此适用范围,偏高岭土对油井水泥抗压强度的改善作用减弱,甚至还会降低油井水泥的抗压强度。  相似文献   

2.
为了研究偏高岭土的掺入对水泥土强度及渗透系数的影响,采用室内试验研究方法,通过用偏高岭土等量替换水泥制作水泥土试块,对不同偏高岭土掺量的水泥土试块在不同养护龄期下进行无侧限抗压强度试验及渗透试验,探究偏高岭土掺量和龄期对水泥土强度和渗透系数的影响。研究结果表明:一定量偏高岭土的掺入能极大地提高水泥土的强度并且减小水泥土的渗透系数,且在偏高岭土掺量为3%时达到最佳,同时表明了水泥土的渗透系数和强度具有较好的线性相关性。  相似文献   

3.
偏高岭土对水泥土强度及渗透系数的影响研究   总被引:1,自引:1,他引:0  
为了研究偏高岭土的掺入对水泥土强度及渗透系数的影响,采用室内试验研究方法,通过用偏高岭土等量替换水泥制作水泥土试块,对不同偏高岭土掺量的水泥土试块在不同养护龄期下进行无侧限抗压强度试验及渗透试验,探究偏高岭土掺量和龄期对水泥土强度和渗透系数的影响。研究结果表明:一定量偏高岭土的掺入能极大地提高水泥土的强度并且减小水泥土的渗透系数,且在偏高岭土掺量为3%时达到最佳,同时表明了水泥土的渗透系数和强度具有较好的线性相关性。  相似文献   

4.
偏高岭土对高性能水泥砂浆性能的影响   总被引:1,自引:0,他引:1  
研究了偏高岭土的火山灰活性,考察了不同偏高岭土掺量对高性能水泥砂浆的流动度、抗折强度、抗压强度和氯离子渗透性的影响.试验结果表明:偏高岭土的火山灰活性高于硅灰;偏高岭土颗粒形貌的不规则性会降低新拌砂浆的流动度;偏高岭土的掺入使砂浆的抗折强度降低,90d养护龄期时偏高岭土掺量为10%的砂浆抗折强度高于偏高岭土掺量为6%,14%的砂浆抗折强度.偏高岭土掺量为10%的砂浆的后期抗压强度最高,90 d养护龄期时可达96.3 MPa;56 d龄期时偏高岭土掺量为0%,6%,10%,14%的砂浆的氯离子渗透性都较低,电通量分别为165,221,191,158 C.  相似文献   

5.
李雪萍 《河南科学》2019,37(9):1422-1426
矿渣主要是一种填充料或者代替部分硅酸盐水泥熟料加工成矿渣水泥,同时也是碱激发水泥的重要材料.通过改变粉煤灰、水玻璃、偏高岭土、硅灰以及石灰的掺量,评价其对碱矿渣混凝土和易性及立方体抗压强度的影响.试验结果表明:粉煤灰及水玻璃的掺入能够改善碱矿渣混凝土的和易性,其中粉煤灰改善效果更为显著,硅灰、石灰以及偏高岭土的掺入会降低碱矿渣混凝土和易性;粉煤灰、石灰及偏高岭土的掺入会降低碱矿渣混凝土28 d抗压强度,其中偏高岭土对强度影响最为显著,水玻璃、硅灰的掺入能够增强碱矿渣混凝土28 d抗压强度,其中水玻璃对强度的改善效果较为显著.  相似文献   

6.
为了研究山西偏高岭土对水泥土应力-应变曲线的影响,采用无侧限抗压强度试验对不同偏高岭土掺量、不同龄期水泥土的应力-应变特征影响规律进行分析。试验结果表明:随着偏高岭土掺量的增加,水泥土峰值应力先增加后减小,当掺量为3%时,峰值应力达到最大;随着抗压强度的增加,极限应变总体呈减小趋势,变形模量呈线性增加。  相似文献   

7.
碱激发偏高岭土制备土聚水泥的试验研究   总被引:1,自引:0,他引:1  
文章讨论了高岭土的煅烧温度和保温时间、偏高岭土的细度、碱性激活剂的种类、工业水玻璃的掺量和模数以及养护条件对土聚水泥强度的影响.研究表明,煤系高岭土经750~850 ℃煅烧-保温2 h,所得的无定性状态的偏高岭土经模数为1.0,掺量为8% Na2O·nSiO2溶液的激发,在自然养护条件下制备出了具有早强、高强性能的新型胶凝材料.  相似文献   

8.
采用偏高岭土-水泥体系对Cd污染土固化/稳定处理。通过无侧限抗压强度试验和毒性浸出试验,探讨Cd2+含量和偏高岭土掺量对固化污染土强度和浸出特性的影响。结果表明:固化土体的无侧限抗压强度随着养护龄期的增加而呈不同程度的对数增长趋势;掺加偏高岭土后,固化土体随着Cd2+含量的增加,强度逐渐减小,无明显临界效应;各种Cd2+含量下,偏高岭土的掺入对固化土体的强度均有提高,且掺量达到2%时出现峰值;毒性浸出试验结果表明掺入偏高岭土对污染土中Cd2+具有更优异固化稳定效果;无论从固化效果还是从经济性出发,偏高岭土的最佳掺量均在2%左右,且可适当减少固化剂用量。  相似文献   

9.
矿渣掺量对偏高岭土基土聚水泥抗压强度及孔结构的影响   总被引:2,自引:0,他引:2  
为提高偏高岭土基土聚水泥的力学性能,在偏高岭土中加入不同掺量(质量分数10%~50%)的矿渣,分析其对土聚水泥抗压强度的影响,并利用压汞仪和扫描电镜对80℃蒸养3 d的土聚水泥试样进行孔结构和断面形貌分析.实验结果表明:随着矿渣掺量的增加,土聚水泥的抗压强度显著提高,孔隙率呈线性减小,孔径分布逐步向微孔方向移动.当矿渣掺量为50%时,80℃蒸养3 d和7 d后抗压强度分别达到73.4和74.4 MPa,3 d龄期试块的孔隙率仅为4.46%,孔径尺寸小于20 nm.微观结构分析表明,矿渣的加入使土聚水泥结构更加致密,有利于土聚水泥抗压强度的提高.  相似文献   

10.
为了探究不同偏高岭土掺量及不同碱掺量下污泥灰胶砂抗压强度与孔结构之间的关系,以污泥焚烧灰与偏高岭土混合物替代40%水泥,在NaOH与水玻璃激发下制备碱激发污泥灰-偏高岭土胶砂,通过分析胶砂的微观形貌、物相组成、官能团构成、孔结构特征与抗压强度之间的联系,建立了抗压强度与孔隙率和无害孔占比的二元线性关系模型。结果表明:胶砂的密实度与抗压强度均随偏高岭土掺量的增加而提高,随碱掺量的增加先降低后提高;当碱掺量质量分数为5%、偏高岭土掺量质量分数为12%时,胶砂水化产物较多,抗压强度最高,达57.8 MPa;胶砂的孔隙率与无害孔占比受偏高岭土掺量与碱掺量影响较大,与抗压强度线性关系较强;建立的二元线性关系模型与实验数据吻合良好。  相似文献   

11.
以纯碳酸钙、贝壳和石灰石为混合材,探讨掺量变化对硅酸盐水泥性能的影响.试验表明:硅酸盐水泥掺入质量分数为5%~15%的贝壳混合材后,水泥标准稠度用水量减少.3 d、7 d抗折强度高于普通硅酸盐水泥,28 d抗折强度先增后减.28 d抗压强度损失率为石灰石-硅酸盐水泥>贝壳-硅酸盐水泥>纯碳酸钙-硅酸盐水泥.贝壳混合材最佳掺量为10%,此时减水效果最好.早期强度高,28 d抗压强度损失率最小.贝壳化学组成和微观结构使其具有颗粒形态效应、化学反应活性和微细集料填充效应,可成为石灰石混合材的良好替代品.  相似文献   

12.
原料粒度对磷酸镁水泥水化硬化特性的影响   总被引:3,自引:0,他引:3  
研究了原料粒度对新型磷酸镁水泥(MPC)水化硬化过程的影响规律.首先,以一定量不同粒度的烧结氧化镁粉(MgO)和磷酸二氢钾(KH2PO4)搭配并掺入不同量的缓凝剂硼砂(Na2B4O7.10H2O)配制MPC.然后,测试MPC浆体3h内半绝热温升曲线、凝结时间和MPC硬化体的强度,并分析硬化体的物相组成和微观结构形貌.结果表明:MgO粉和KH2PO4的粒度对MPC水化硬化特性有显著影响,随着MgO粉和KH2PO4的颗粒粒径减小,早期水化反应速率加快,凝结时间缩短;但对于抗压强度并非颗粒越小其值越大,在最佳MgO粉和KH2PO4粒度范围内,MPC硬化体抗压强度最高.同样,对一定粒度MgO粉和KH2PO搭配的MPC浆体,在硼砂适量时,MPC硬化体才能具有适宜的凝结时间、水化反应速度和较高的抗压强度.  相似文献   

13.
含氯促凝剂曾在稠油热采井固井中得到应用,但高温下对油井水泥石性能的影响及机理却未得到深入研究。评价了不同加量及种类的促凝剂对加砂水泥石抗压强度的影响,并深入考察了含氯促凝剂对加砂水泥石抗压强度的影响,结合X–衍射和电镜扫描分析了含氯促凝剂加砂水泥石高温前后水化产物组分和微观形貌变化,探讨了含氯促凝剂对加砂水泥石结构变化的作用机理,结果表明:水化产物硬硅钙石是水泥石高温后强度不衰退的主要原因,当温度超过230 ℃时,水泥石水化产物组分受到氯离子的影响,生成了新的斜长钙石组分,改变了水泥石微观结构,是水泥抗压强度急剧衰退的主要原因。  相似文献   

14.
早期受冻温度对负温混凝土微观结构与强度的影响   总被引:1,自引:0,他引:1  
为降低负温给混凝土结构带来的内部损伤,采用压汞法测孔、扫描电镜微观形貌观察等实验手段,研究在不同温度早期受冻混凝土的孔径分布和微观结构及其抗压强度随龄期发展变化情况,探讨不同冻结温度下负温混凝土微观结构与宏观力学性能的关系。结果表明:早期养护温度越低,水泥石初始结构越疏松,<20 nm的凝胶孔含量明显降低,混凝土抗压强度较低;转入标准养护后,负温混凝土孔径趋于细化,抗压强度得以迅速增长,-5℃受冻的混凝土,转标准养护28 d后>200 nm孔含量几乎与标准养护28 d混凝土相当,抗压强度亦接近。但-10℃和-15℃受冻的两组混凝土中大孔含量仍略高于标准养护混凝土,抗压强度相对略低。  相似文献   

15.
探究不锈钢渣尾泥-矿渣对水泥水化性能的影响,既可解决废渣利用率低且污染环境问题,又能促进建材行业向绿色发展.首先研究了3种原材料的矿物组成和粒度组成,再将两种废渣复掺到水泥熟料中,发现当不锈钢渣尾泥掺量在10% ~20%,矿渣掺量在10% ~30%,两者任比例复掺到水泥熟料中,28 d抗压强度均超过了42.5 MPa.综合热分析定量发现两种废渣能相互激发活性,早期水化反应不明显,后期逐渐增强.微观分析发现试样水化产物主要是未水化的C2 S、C3 S和Ca(OH)2,少量的C-S-H凝胶和AFt晶体,并且后期Ca(OH)2的含量是影响强度的主要因素.  相似文献   

16.
基于田口法的钒钛磁铁矿热压块抗压强度的优化   总被引:1,自引:0,他引:1  
使用田口法探索了影响钒钛磁铁矿热压块抗压强度的重要因子,并通过信噪比分析计算各因子对抗压强度的贡献率,最终给出钒钛磁铁矿热压块的最佳制备条件.实验结果表明,在热压温度、配碳比、煤粉粒度三个影响因素中,煤粉粒度对抗压强度的影响程度最大,其贡献率达到了79.99%,温度和配碳比二者的贡献率分别为15%和3.63%.优化后钒钛磁铁矿热压块的制备参数为热压温度300℃、煤粉粒度75μm、配碳比1.8.在优化后的参数下进行验证实验,得到的钒钛矿热压块的平均抗压强度达到1 152.1 N.  相似文献   

17.
纳米粒子和PVA纤维增强水泥基复合材料抗折性能研究   总被引:1,自引:1,他引:0  
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、PVA纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米SiO2掺量增加呈先增大后减小的趋势,当纳米SiO2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米SiO2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

18.
本文通过研究罗马尼亚S2井水泥在高温下形成水泥石的强度衰退规律,提出合理的加砂量并讨论了应加砂的温度范围。在水泥浆中加入复配的IC缓凝剂,成功地抑制了水泥石强度衰退现象,显著提高了加砂水泥石抗压强度。掺有2.0%LC的S2加砂水泥浆流动性能好,滤失量和析水低,120`C稠化时间达260分钟,其水泥石1天和7天的杭压强度分别为40.5MPa和76.0MPa,满足4000~5500m井深施工。文章还分析了LC提高水泥石强度的机理,为选择高温缓凝剂提供了一定的依据。  相似文献   

19.
研究了海藻酸钠溶液的温度和掺量对泡沫混凝土抗压强度的影响,通过傅里叶变换红外光谱(FT-IR)和SEM测试技术,分析了海藻酸钠对泡沫混凝土抗压强度的影响机理。结果表明,在以双氧水为发泡剂的体系中,随着海藻酸钠溶液掺量的增加,泡沫混凝土的抗压强度呈先上升后下降的趋势,添加适量的海藻酸钠,可降低发泡孔径、促进水泥和生活垃圾焚烧炉渣的水化以及增强孔壁的密实度,从而使泡沫混凝土的抗压强度得到了显著的提高。  相似文献   

20.
为了研究温度对含碳纤维水泥水化及其强度的影响,首先将制备好的含碳纤维水泥净浆倒入40mm×40mm×40mm立方体模具中,振密实后分别放入低温(10℃),常温(25℃),高温(100℃)环境下养护至规定龄期(3,7,28d),通过XRD和SEM研究水泥水化过程,对比分析在不同养护温度条件下含碳纤维混凝土的抗压强度。研究结果表明,随着养护温度的增加,C-S-H凝胶和C-H的形成速率增加,从而提高了混凝土的抗压强度;在一定温度范围内提高养护温度,可加速含碳纤维混凝土水化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号