首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/- embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was approximately 15 times high in elderly Plk4+/- mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/- regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/- mice. Loss of heterozygosity occurs frequently (approximately 60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.  相似文献   

2.
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.  相似文献   

3.
4.
Control of endodermal endocrine development by Hes-1   总被引:28,自引:0,他引:28  
Development of endocrine cells in the endoderm involves Atonal and Achaete/Scute-related basic helix-loop-helix (bHLH) proteins. These proteins also serve as neuronal determination and differentiation factors, and are antagonized by the Notch pathway partly acting through Hairy and Enhancer-of-split (HES)-type proteins. Here we show that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon. Moreover, upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes-1 operates as a general negative regulator of endodermal endocrine differentiation.  相似文献   

5.
Pancreas development begins with the formation of buds at specific sites in the embryonic foregut endoderm. We used recombination-based lineage tracing in vivo to show that Ptf1a (also known as PTF1-p48) is expressed at these early stages in the progenitors of pancreatic ducts, exocrine and endocrine cells, rather than being an exocrine-specific gene as previously described. Moreover, inactivation of Ptf1a switches the character of pancreatic progenitors such that their progeny proliferate in and adopt the normal fates of duodenal epithelium, including its stem-cell compartment. Consistent with the proposal that Ptf1a supports the specification of precursors of all three pancreatic cell types, transgene-based expression of Pdx1, a gene essential to pancreas formation, from Ptf1a cis-regulatory sequences restores pancreas tissue to Pdx1-null mice that otherwise lack mature exocrine and endocrine cells because of an early arrest in organogenesis. These experiments provide evidence that Ptf1a expression is specifically connected to the acquisition of pancreatic fate by undifferentiated foregut endoderm.  相似文献   

6.
The mechanisms that govern homeostasis of complex systems have been elusive but can be illuminated by mutations that disrupt system behavior. Mutations in the gene encoding the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and hyperkalemia. We show that physiology in mice transgenic for genomic segments harboring wild-type (TgWnk4(WT)) or PHAII mutant (TgWnk4(PHAII)) Wnk4 is changed in opposite directions: TgWnk4(PHAII) mice have higher blood pressure, hyperkalemia, hypercalciuria and marked hyperplasia of the distal convoluted tubule (DCT), whereas the opposite is true in TgWnk4(WT) mice. Genetic deficiency for the Na-Cl cotransporter of the DCT (NCC) reverses phenotypes seen in TgWnk4(PHAII) mice, demonstrating that the effects of the PHAII mutation are due to altered NCC activity. These findings establish that Wnk4 is a molecular switch that regulates the balance between NaCl reabsorption and K+ secretion by altering the mass and function of the DCT through its effect on NCC.  相似文献   

7.
Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.   总被引:20,自引:0,他引:20  
The initial stages of pancreatic development occur early during mammalian embryogenesis, but the genes governing this process remain largely unknown. The homeodomain protein Pdx1 is expressed in the developing pancreatic anlagen from the approximately 10-somite stage, and mutations in the gene Pdx1 prevent the development of the pancreas. The initial stages of pancreatic development, however, still occur in Pdx1-deficient mice. Hlxb9 (encoding Hb9; ref. 6) is a homeobox gene that in humans has been linked to dominant inherited sacral agenesis and we show here that Hb9 is expressed at early stages of mouse pancreatic development and later in differentiated beta-cells. Hlxb9 has an essential function in the initial stages of pancreatic development. In absence of Hlxb9 expression, the dorsal region of the gut epithelium fails to initiate a pancreatic differentiation program. In contrast, the ventral pancreatic endoderm develops but exhibits a later and more subtle perturbation in beta-cell differentiation and in islet cell organization. Thus, dorsally Hlxb9 is required for specifying the gut epithelium to a pancreatic fate and ventrally for ensuring proper endocrine cell differentiation.  相似文献   

8.
9.
Hermansky-Pudlak syndrome (HPS) is a disorder of organelle biogenesis in which oculocutaneous albinism, bleeding and pulmonary fibrosis result from defects of melanosomes, platelet dense granules and lysosomes. HPS is common in Puerto Rico, where it is caused by mutations in the genes HPS1 and, less often, HPS3 (ref. 8). In contrast, only half of non-Puerto Rican individuals with HPS have mutations in HPS1 (ref. 9), and very few in HPS3 (ref. 10). In the mouse, more than 15 loci manifest mutant phenotypes similar to human HPS, including pale ear (ep), the mouse homolog of HPS1 (refs 13,14). Mouse ep has a phenotype identical to another mutant, light ear (le), which suggests that the human homolog of le is a possible human HPS locus. We have identified and found mutations of the human le homolog, HPS4, in a number of non-Puerto Rican individuals with HPS, establishing HPS4 as an important HPS locus in humans. In addition to their identical phenotypes, le and ep mutant mice have identical abnormalities of melanosomes, and in transfected melanoma cells the HPS4 and HPS1 proteins partially co-localize in vesicles of the cell body. In addition, the HPS1 protein is absent in tissues of le mutant mice. These results suggest that the HPS4 and HPS1 proteins may function in the same pathway of organelle biogenesis.  相似文献   

10.
Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.  相似文献   

11.
The liver and exocrine pancreas share a common structure, with functioning units (hepatic plates and pancreatic acini) connected to the ductal tree. Here we show that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone. Cre-based lineage tracing showed that adult intestinal cells, hepatocytes and pancreatic acinar cells are supplied physiologically from Sox9-expressing progenitors. Combination of lineage analysis and hepatic injury experiments showed involvement of Sox9-positive precursors in liver regeneration. Embryonic pancreatic Sox9-expressing cells differentiate into all types of mature cells, but their capacity for endocrine differentiation diminishes shortly after birth, when endocrine cells detach from the epithelial lining of the ducts and form the islets of Langerhans. We observed a developmental switch in the hepatic progenitor cell type from Sox9-negative to Sox9-positive progenitors as the biliary tree develops. These results suggest interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.  相似文献   

12.
Inhibition of telomerase is proposed to limit the growth of cancer cells by triggering telomere shortening and cell death. Telomere maintenance by telomerase is sufficient, in some cell types, to allow immortal growth. Telomerase has been shown to cooperate with oncogenes in transforming cultured primary human cells into neoplastic cells, suggesting that telomerase activation contributes to malignant transformation. Moreover, telomerase inhibition in human tumour cell lines using dominant-negative versions of TERT leads to telomere shortening and cell death. These findings have led to the proposition that telomerase inhibition may result in cessation of tumour growth. The absence of telomerase from most normal cells supports the potential efficacy of anti-telomerase drugs for tumour therapy, as its inhibition is unlikely to have toxic effects. Mice deficient for Terc RNA (encoding telomerase) lack telomerase activity, and constitute a model for evaluating the role of telomerase and telomeres in tumourigenesis. Late-generation Terc-/- mice show defects in proliferative tissues and a moderate increase in the incidence of spontaneous tumours in highly proliferative cell types (lymphomas, teratocarcinomas). The appearance of these tumours is thought to be a consequence of chromosomal instability in these mice. These observations have challenged the expected effectiveness of anti-telomerase-based cancer therapies. Different cell types may nonetheless vary in their sensitivity to the chromosomal instability produced by telomere loss or to the activation of telomere-rescue mechanisms. Here we show that late-generation Terc-/- mice, which have short telomeres and are telomerase-deficient, are resistant to tumour development in multi-stage skin carcinogenesis. Our results predict that an anti-telomerase-based tumour therapy may be effective in epithelial tumours.  相似文献   

13.
Haploinsufficiency of protamine-1 or -2 causes infertility in mice   总被引:22,自引:0,他引:22  
Protamines are the major DNA-binding proteins in the nucleus of sperm in most vertebrates and package the DNA in a volume less than 5% of a somatic cell nucleus. Many mammals have one protamine, but a few species, including humans and mice, have two. Here we use gene targeting to determine if the second protamine provides redundancy to an essential process, or if both protamines are necessary. We disrupted the coding sequence of one allele of either Prm1 or Prm2 in embryonic stem (ES) cells derived from 129-strain mice, and injected them into blastocysts from C57BL/6-strain mice. Male chimeras produced 129-genotype sperm with disrupted Prm1 or Prm2 alleles, but failed to sire offspring carrying the 129 genome. We also found that a decrease in the amount of either protamine disrupts nuclear formation, processing of protamine-2 and normal sperm function. Our studies show that both protamines are essential and that haploinsufficiency caused by a mutation in one allele of Prm1 or Prm2 prevents genetic transmission of both mutant and wild-type alleles.  相似文献   

14.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

15.
The autosomal dominant myopathy facioscapulohumeral muscular dystrophy (FSHD1, OMIM 158900) is caused by contraction of the D4Z4 repeat array on 4qter. We show that this contraction causes marked hypomethylation of the contracted D4Z4 allele in individuals with FSHD1. Individuals with phenotypic FSHD1, who are clinically identical to FSHD1 but have an unaltered D4Z4, also have hypomethylation of D4Z4. These results strongly suggest that hypomethylation of D4Z4 is a key event in the cascade of epigenetic events causing FSHD1.  相似文献   

16.
Jackson IJ 《Nature genetics》2004,36(9):935-936
Several mutant strains of mice have dark skin pigmentation due to an aberrant accumulation of pigment-producing melanocytes in the dermal layer of the skin. A new study shows that three such strains carry activating mutations in the genes encoding the G-protein subunits Galphaq or Galpha11, resulting in more pigment cell precursors and an excess of dermally retained pigment cells at birth.  相似文献   

17.
Kim SK 《Nature genetics》2012,44(4):363-364
Neuroendocrine cells, including those in the gut, have a vast array of functions. A new study shows that conditional inactivation of the gene encoding Foxo1 in mouse intestinal endocrine cells converts them into cells synthesizing and secreting insulin. Ectopic gut insulin production was sufficient to ameliorate glucose control in mice with conditional pancreatic β-cell loss and diabetes mellitus.  相似文献   

18.
Light is a dominant mutant allele of the mouse brown locus which results in hairs pigmented only at their tips. The phenotype is due to premature melanocyte death. We have sequenced the tyrosinase-related protein-1 cDNA encoded at this locus from Light mice and found that it contains a single base alteration from wild-type, causing an Arg to Cys change in the protein. To further elucidate the mutant phenotype, we studied the expression of melanocyte specific genes in the skin of Light mice. We have demonstrated premature melanocyte death, but only in pigmented mice, indicating that the cell death is mediated through the inherent cytotoxicity of pigment production.  相似文献   

19.
20.
Regulation of glucose homeostasis by insulin depends on the maintenance of normal beta-cell mass and function. Insulin-like growth factor 1 (Igf1) has been implicated in islet development and differentiated function, but the factors controlling this process are poorly understood. Pancreatic islets produce Igf1 and Igf2, which bind to specific receptors on beta-cells. Igf1 has been shown to influence beta-cell apoptosis, and both Igf1 and Igf2 increase islet growth; Igf2 does so in a manner additive with fibroblast growth factor 2 (ref. 10). When mice deficient for the Igf1 receptor (Igf1r(+/-)) are bred with mice lacking insulin receptor substrate 2 (Irs2(-/-)), the resulting compound knockout mice show a reduction in mass of beta-cells similar to that observed in pancreas of Igf1r(-/-) mice (ref. 11), suggesting a role for Igf1r in growth of beta-cells. It is possible, however, that the effects in these mice occur secondary to changes in vascular endothelium or in the pancreatic ductal cells, or because of a decrease in the effects of other hormones implicated in islet growth. To directly define the role of Igf1, we have created a mouse with a beta-cell-specific knockout of Igf1r (betaIgf1r(-/-)). These mice show normal growth and development of beta-cells, but have reduced expression of Slc2a2 (also known as Glut2) and Gck (encoding glucokinase) in beta-cells, which results in defective glucose-stimulated insulin secretion and impaired glucose tolerance. Thus, Igf1r is not crucial for islet beta-cell development, but participates in control of differentiated function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号