首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用量子化学从头算方法研究了全氟聚乙醚羧酸及其负离子的平衡几何构型以及负离子的二水合物和四水合物的氢键作用能 ,探讨了羧酸根—COO-的亲水性质。计算发现 ,氟原子均带有负电荷 ,并包围C—C—O链形成带有负电荷的氟醚链 ;且—COO-是一个很强的亲水基 ,能与 2个或 4个水分子生成很强的氢键 ,水合作用能分别为 - 188.2 42kJ/mol和 - 2 2 6 311kJ/mol。  相似文献   

2.
提出了1种快速模拟生物分子间离子氢键作用的新方法,并将该方法用于计算模拟带有1个正电荷的精氨酸侧链与甘氨酸二肽分子、碱基尿嘧啶分子、碱基胸腺嘧啶分子等中性分子间的N—H…O=C离子氢键相互作用.计算结果表明:新方法可以快速计算带电精氨酸侧链分子和甘氨酸二肽分子、碱基尿嘧啶分子、碱基胸腺嘧啶分子间形成的N—H…O=C离子氢键的平衡氢键键长和分子间相互作用能;得到的平衡氢键键长与从头计算MP2/6-31+G(d,p)方法得到的平衡氢键键长的绝对偏差均小于0.005nm;分子间相互作用能与从头计算MP2.5/CBS方法得到的分子间相互作用能的绝对误差均小于8.2kJ/mol,相对偏差均小于5.5%;在同等计算条件下,新方法的计算效率比从头计算方法快数千倍以上.这些结果表明新方法准确快捷,在生物大分子体系的分子模拟领域有潜在应用价值.  相似文献   

3.
采用Hartree-Fork,4种DFT(BLYP,B3LYP,MPW1PW91,SVWN5)和MP2方法研究了甲烷水合物结构-Ⅰ的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST2模型.水分子间的氢键能Ebb(l)和甲烷-水分子间的范德华能Evdw(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用MP2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离Ro-o=0.280 nm和碳-氧距离Rc-o=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,MP2)都表明,甲烷水合物结构-Ⅰ是一个由超强氢键(30~36 kJ/mol)组成的稳定结构,其氢键能远大于水分子二聚体和冰Ⅰ4晶格中的氢键能((-22.6±2.9)kJ/mol和(-21.7±0.5)kJ/mol).这些数据为气体水合物的Lennand-Jones和Kihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

4.
烯丙基乙烯基醚锂1,2-迁移机理研究   总被引:2,自引:0,他引:2  
以从头算方法(6-31G基组)研究了烯丙基乙烯基醚锂化物发生乙烯基从氧到碳上的1,2-迁移的机理,乙烯基烯丙基同锂试剂(RLi)反应,但尚未重排前,烯丙基端的C3-O醚键就已断裂,则不是锂离子和烯丙基负离子呈负离子对形式存在,过渡态构型类似一个二聚代的反式三元环结构,重排反应的活化能较高(137.4kJ/mol),然而整个反应的放热效应也相当高(176.5kJ/mol),因而它是一个反应速度相当快的重排反应。  相似文献   

5.
采用量子化学方法 ,全优化计算了 6个含N杂芳烃全氟聚醚抗氧抗腐添加剂的平衡几何构型 ,探讨了这些化合物的结构特征。研究发现 ,这些添加剂氟醚链上的氟原子带有较多的负电荷 ,并形成带有负电荷的氟醚链。苯酰胺和氮杂环状部分为平面结构 ,6个添加剂的HOMO均为π 分子轨道。由共轭大π 键的离域性和HOMO的反应活性预测结果表明 ,不饱和的共轭体系不仅能与氧自由基结合 ,还因共轭体系的孤对电子更易转移而与金属形成配位键和化学吸附膜。添加剂的电子结构性质展示出了抗氧抗腐蚀作用。  相似文献   

6.
采用量子化学方法,全优化计算了6个含N杂芳烃全氟聚醚抗氧抗腐添加剂的平衡几何构型,探讨了这些化合物的结构特征,研究发现,这些添加剂氟醚链上的氟原子带有较多的负电荷,并形成带有负电荷的氟醚链。苯酰胺和氮杂环状部分为平面结构。6个添加剂的HOMO均为π-分子轨道,由共轭大π-键的离域性和HOMO的反应活性预测结果表明,不饱和的共轭体系不仅能与氧自由基结合,还因共轭体系的孤对电子更易转移而与金属形成配位键和化学吸附膜,添加剂的电子结构性质展示出了抗氧抗腐蚀作用。  相似文献   

7.
天然氨基酸中氢键的量子化学研究   总被引:4,自引:0,他引:4  
用从头计算法优化了20种天然氨基酸正、负、偶极离子.计算结果表明,α-NH2上的氮原子可以和羧基氧原子形成氢键,通过N1-H2…O3氢键的生成,原子N1、H3、O4、C4、C5形成了五元环.从正离子、负离子到偶极离子,氢键强度逐渐减小.侧链原子对氢键也有影响:正离子的侧链除苏氨酸和丝氨酸外,其它氨基酸不对氢键构成影响;负离子氢键受侧链的影响较大;而偶极离子中氢键基本不受侧链的影响.  相似文献   

8.
运用密度泛函理论B3LYP方法和6-311++G**基函数对甲酰胺二聚体进行结构优化与频率计算.结果表明,甲酰胺二聚体存在两个稳定氢键异构体,分别具有非平面C1对称性和平面Cs对称性.二聚体分子间有强的相互作用,经基组重叠误差BSSE和零点振动能ZPE校正后的相互作用能为-20.14和-27.40 kJ/mol.氢键的形成导致H—N伸缩振动频率红移.298.15 K和标准状态下,二聚体形成过程的Gibbs自由能为15.56和18.82 kJ/mol,显示甲酰胺二聚体的形成反应是一个非自发过程.  相似文献   

9.
采用H artree-Fork,4种DFT(BLYP,B3LYP,M PW 1PW 91,SVWN 5)和M P2方法研究了甲烷水合物结构-I的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST 2模型.水分子间的氢键能Ehb(l)和甲烷-水分子间的范德华能EvdW(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用M P2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离RO-O=0.280 nm和碳-氧距离RC-O=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,M P2)都表明,甲烷水合物结构-I是一个由超强氢键(30~36 kJ/m o l)组成的稳定结构,其氢键能远大于水分子二聚体和冰I4晶格中的氢键能((-22.6±2.9)kJ/m o l和(-21.7±0.5)kJ/m o l).这些数据为气体水合物的Lennand-Jones和K ihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

10.
采用密度泛函理论的B3LYP方法和微扰论的MP2方法, 研究苏氨酸分子构象转变机制以及水分子与羟基自由基对氢迁移反应的催化作用. 结果表明: S-苏氨酸向R 别苏氨酸的构象转变反应有4个通道, R-别苏氨酸向R-苏氨酸与S-苏氨酸向S-别苏氨酸的构象转变反应各有1个通道; S-苏氨酸向R-别苏氨酸构象转变反应的最高能垒为250.2 kJ/mol; R-别苏氨酸向R-苏氨酸构象转变反应的最高能垒为335.0 kJ/mol; S-苏氨酸向S-别苏氨酸构象转变反应的最高能垒为359.6 kJ/mol; 2个水分子构成的链及水分子/羟基自由基构成的链对质子迁移反应有较好的催化作用, 使S-苏氨酸向R-别苏氨酸构象转变反应的高能垒分别降为128.3 kJ/mol和108.6 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号