首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

2.
3.
Central nervous system control of food intake   总被引:122,自引:0,他引:122  
Schwartz MW  Woods SC  Porte D  Seeley RJ  Baskin DG 《Nature》2000,404(6778):661-671
New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.  相似文献   

4.
Control of food intake by energy supply   总被引:1,自引:0,他引:1  
F M Toates  D A Booth 《Nature》1974,251(5477):710-711
  相似文献   

5.
6.
M Kano  M Kato 《Nature》1987,325(6101):276-279
Long-term modification of transmission efficacy at synapses is the cellular basis of memory and learning. A special type of synaptic plasticity in the cerebellum was postulated theoretically, and has since been verified. Each cerebellar Purkinje cell (PC) receives two distinct excitatory inputs, one from parallel fibres (PFs) and the other from a climbing fibre (CF). When these two types of inputs are conjunctively activated, PF-PC transmission undergoes long-term depression (LTD). Accumulated evidence suggests that LTD plays a role in the motor learning processes of the cerebellum. At the molecular level, LTD appears to be caused by desensitization of receptor molecules in PC dendrites towards the PF neurotransmitter, presumably L-glutamate (Glu). Glu receptors are heterogeneous and can be divided into several subtypes. In this study, we compared the potency of several Glu agonists in inducing LTD and found a highly selective dependency of LTD on the quisqualate(QA)-selective subtype of Glu receptors.  相似文献   

7.
Darby C  Hsu JW  Ghori N  Falkow S 《Nature》2002,417(6886):243-244
Bubonic plague is transmitted to mammals, including humans, by the bites of fleas whose digestive tracts are blocked by a mass of the bacterium Yersinia pestis. In these fleas, the plague-causing bacteria are surrounded by an extracellular matrix of unknown composition, and the blockage depends on a group of bacterial genes known as the hmsHFRS operon. Here we show that Y. pestis creates an hmsHFRS-dependent extracellular biofilm to inhibit feeding by the nematode Caenorhabditis elegans. Our results suggest that feeding obstruction in fleas is a biofilm-mediated process and that biofilms may be a bacterial defence against predation by invertebrates.  相似文献   

8.
F S Kraly 《Nature》1983,302(5903):65-66
Drinking occurs around meal time in most mammals. Food-related drinking accounts for approximately 70% of daily fluid intake for rats, but little is known of the mechanisms by which eating elicits drinking. That eating and vagal stimulation elicit the release of histamine from gastric mucosa, together with the fact that drinking elicited by eating or exogenous histamine depends on an intact abdominal vagus, suggests a role for endogenous histamine as a component of food-related drinking in the rat. I report here that the combined antagonism of peripheral H1 and H2 receptors for histamine (1) attenuates drinking elicited by normal food-contingent stimulation of the gastrointestinal tract and (2) abolishes drinking elicited by pregastric food-contingent stimulation during sham feeding in the rat.  相似文献   

9.
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.  相似文献   

10.
Central nervous system control of food intake and body weight   总被引:5,自引:0,他引:5  
Morton GJ  Cummings DE  Baskin DG  Barsh GS  Schwartz MW 《Nature》2006,443(7109):289-295
The capacity to adjust food intake in response to changing energy requirements is essential for survival. Recent progress has provided an insight into the molecular, cellular and behavioural mechanisms that link changes of body fat stores to adaptive adjustments of feeding behaviour. The physiological importance of this homeostatic control system is highlighted by the severe obesity that results from dysfunction of any of several of its key components. This new information provides a biological context within which to consider the global obesity epidemic and identifies numerous potential avenues for therapeutic intervention and future research.  相似文献   

11.
F J Vaccarino  F E Bloom  J Rivier  W Vale  G F Koob 《Nature》1985,314(6007):167-168
Hypothalamic growth hormone-releasing factors (GRFs) have been purified recently from human pancreatic (hp) tumours and from rat hypothalamus (rh). GRF peptides have strong homology with peptides of the glucagon, vasoactive intestinal polypeptide and PHI-27 family. Aside from their potent actions on release of somatotropin, no other biological actions of GRFs have been reported. GRF has been localized in neurones bordering the ventromedial hypothalamic nucleus, a region associated frequently with experimental analysis of feeding behaviour. We now report that intracerebroventricularly (i.c.v.)-administered rhGRF and hpGRF(1-40) in doses of 0.2, 2.0 and 20.0 pmol, produced an increase in food intake in hungry rats. This effect seemed to be specific to GRF as i.c.v. injections of a structurally related but physiologically inactive peptide in the same doses had no effect on feeding. In addition, peripheral injections of rhGRF or growth hormone had no effect on food intake, suggesting that the present effects may be mediated centrally. Injections (i.c.v.) of rhGRF (0.2, 2.0 and 20.0 pmol) had no effect on general activity, suggesting that GRF does not produce nonspecific arousal.  相似文献   

12.
Obesity is an epidemic in Western society, and causes rapidly accelerating rates of type 2 diabetes and cardiovascular disease. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a 'fuel gauge' to monitor cellular energy status. We investigated the potential role of AMPK in the hypothalamus in the regulation of food intake. Here we report that AMPK activity is inhibited in arcuate and paraventricular hypothalamus (PVH) by the anorexigenic hormone leptin, and in multiple hypothalamic regions by insulin, high glucose and refeeding. A melanocortin receptor agonist, a potent anorexigen, decreases AMPK activity in PVH, whereas agouti-related protein, an orexigen, increases AMPK activity. Melanocortin receptor signalling is required for leptin and refeeding effects on AMPK in PVH. Dominant negative AMPK expression in the hypothalamus is sufficient to reduce food intake and body weight, whereas constitutively active AMPK increases both. Alterations of hypothalamic AMPK activity augment changes in arcuate neuropeptide expression induced by fasting and feeding. Furthermore, inhibition of hypothalamic AMPK is necessary for leptin's effects on food intake and body weight, as constitutively active AMPK blocks these effects. Thus, hypothalamic AMPK plays a critical role in hormonal and nutrient-derived anorexigenic and orexigenic signals and in energy balance.  相似文献   

13.
14.
Gut hormone PYY(3-36) physiologically inhibits food intake   总被引:42,自引:0,他引:42  
Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY(3-36) (PYY(3-36)), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY(3-36) in rats inhibits food intake and reduces weight gain. PYY(3-36) also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY(3-36) increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY(3-36) inhibits food intake. PYY(3-36) also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY(3-36) significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY(3-36) may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.  相似文献   

15.
16.
17.
18.
Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.  相似文献   

19.
Dynamin was discovered in bovine brain tissue as a nucleotide-sensitive microtubule-binding protein of relative molecular mass 100,000. It was found to cross-link microtubules into highly ordered bundles, and appeared to have a role in intermicrotubule sliding in vitro. Cloning and sequencing of rat brain dynamin complementary DNA identified an N-terminal region of about 300 amino acids which contained the three consensus elements characteristic of GTP-binding proteins. Extensive homology was found between this domain and the mammalian Mx proteins which are involved in interferon-induced viral resistance, and with the product of the VPS1 locus in Saccharomyces cerevisiae, which has been implicated both in membrane protein sorting, and in meiotic spindle pole separation. Dynamin-containing microtubule bundles were not observed in an immunofluorescence study of cultured mammalian cells, but a role for a GTP-requiring protein in intermicrotubule sliding during mitosis in plants has been reported. We report here that Drosophila melanogaster contains multiple tissue-specific and developmentally-regulated forms of dynamin, which are products of the shibire locus previously implicated in endocytic protein sorting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号