首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高酚醛树脂基复合材料的烧蚀隔热性能,本研究采用陕西太航高残碳热固性硼酚醛树脂(THC)系列为基体,芳碳混编布为增强相,通过添加不同比例的锆系功能性填料(陶瓷化助剂)以制备可陶瓷化酚醛树脂基复合材料.通过对改性树脂进行热失重、残碳率、导热系数和线烧蚀率的性能测试分析并辅以扫描电子显微镜(SEM)表征.研究结果表明,加入填料,在500℃以下对材料的残碳率影响不大,500℃以上能显著提高复合材料的烧蚀隔热性能,且随着填料占比的增加,影响越明显.由于填料添加量9%后会存在溶解困难,因此适用于工业生产制造的优选添加量为7%.  相似文献   

2.
采用无溶剂法合成了双酚A型苯并噁嗪树脂(BOZ),添加成碳剂后与环氧树脂共固化制备耐高温树脂基体,并用该树脂基体与玻璃纤维布制备了耐高温防火复合材料。表征了噁嗪树脂的结构以及噁嗪树脂与环氧树脂的固化特性,采用TG-DTA研究了固化体系的耐热性;对添加不同成碳剂的树脂基体及其复合材料在1000℃火焰中燃烧,研究了成碳剂对材料残碳率和碳层形貌的影响。结果表明,树脂基体分解放热峰的峰顶温度为670℃;当加入质量分数5%复配成碳剂时,树脂基体残碳率为68.83%;其玻璃纤维增强的复合材料在1000℃火焰中燃烧15min后残碳率为25.82%,碳层均匀附着在玻璃纤维表面,起到隔热和烧蚀作用,使复合材料具有良好的短效防火性。  相似文献   

3.
在苯酚预聚物中分别添加其质量分数为1.5%的纳米蒙脱石(M)和坡缕石(P),原位聚合了2种酚醛树脂(分别记为PF/M和PF/P).用热分析仪对其进行了TG分析.将合成的PF/M和PF/P为基体分别制备半金属摩擦材料,按照GB5763—2008在XDMSM定速式摩擦磨损试验机上进行摩擦学性能测试.结果表明:纳米粒子份数为1.5%PF/M的耐热性及其摩擦材料的摩擦学性能均明显优于未有纳米粒子复合的PF和PF/P,在600℃时PF/M残炭率较PF/P高4%,较PF高12%,所制备的摩擦材料试样的抗热衰退温度较PF/P和PF树脂摩擦材料分别提高约50℃和100℃,且摩擦因数稳定,350℃高温时段的磨损率较FP-1.5和F-0.0分别降低16.8%和27%.  相似文献   

4.
通过间乙炔基苯基重氮盐和联苯酚醛树脂(BN)之间的偶合反应,合成新型的加成固化型间乙炔基苯偶氮联苯型酚醛树脂(EPABN)。采用傅里叶红外光谱(FT-IR)、凝胶渗透色谱(GPC)、核磁共振氢谱(1H-NMR)、差示扫描量热法(DSC)和热重分析(TG)等检测手段表征EPABN树脂的结构和性能。研究结果表明:EPABN树脂分子结构中成功引入乙炔基苯基团;通过乙炔基的偶联反应,EPABN树脂自交联固化物形成芳环等刚性或交联结构;当EPABN树脂的自固化产物的质量损失率为5%和10%,热分解温度分别为460℃和527℃,与联苯酚醛树脂相比分别提高59℃和75℃;EPABN树脂固化物在700℃和1 000℃时氮气氛围残炭率分别为77.9%和70.4%,较联苯酚醛树脂分别提高20.8%和17.1%;EPABN树脂具有优异的耐热性和耐烧蚀性能,有望作为耐烧蚀材料在航空航天领域得到应用。  相似文献   

5.
炭纤维增强树脂炭复合材料微观结构与烧蚀性能   总被引:4,自引:1,他引:4  
采用金相显微镜和扫描电镜对炭纤维增强树脂炭复合材料微观结构进行分析,采用等离子烧蚀方法研究了炭纤维增强树脂炭复合材料不同方向的烧蚀性能,并对其烧蚀表面形貌进行扫描电镜观察,分析了复合材料烧蚀性能差异的原因.研究结果表明:炭纤维增强树脂炭复合材料中炭纤维和树脂炭结合较好,基体中产生了应力石墨化,材料烧蚀优先从纤维与树脂炭的界面及缺陷处开始,轴向垂直于气流方向的纤维越多,材料烧蚀率越小.  相似文献   

6.
以正硅酸乙酯为硅源,与苯并■嗪单体(BO)在酸催化条件下共聚,制备聚苯并■嗪(PBO)SiO_2气凝胶。将PBO-SiO_2气凝胶与纤维复合,在常温常压条件下制备纤维增强PBO-SiO_2气凝胶复合材料。通过现代分析方法研究气凝胶和纤维增强气凝胶复合材料的结构特征,并采用Hot Disk热常数分析仪和石英灯单面加热测试纤维增强PBO-SiO_2气凝胶复合材料的常温热导率和高温隔热性能,采用数显氧指数仪测试材料的极限氧指数(LOI)。结果表明:制备的复合材料密度为0.30 g/cm~3,常温热导率为0.042 W/(m·K),LOI为37.5。复合材料具有良好的力学性能,弯曲强度为0.90 MPa,5%形变的压缩强度为0.24 MPa。热面温度为800℃,加热1 000 s,材料的冷面温度仅为221℃,石英灯单面加热测试前后复合材料的形状保持不变。  相似文献   

7.
以分别经α-氨丙基三乙氧基硅烷(KH550)、浓硝酸、浓硝酸-KH550处理的短切碳纤维作为功能组分,制备室温硫化硅橡胶复合材料,研究了碳纤维处理方法对复合材料的力学性能、热性能和烧蚀性能的影响。结果表明,添加经浓硝酸-KH550连续处理碳纤维时,复合材料的性能最好;性能最佳复合材料的拉伸强度和撕裂强度分别为4.0 MPa和20.3 kN/m,起始分解温度提高到509.3 ℃,而线烧蚀率和质量烧蚀率分别降低至0.148 mm/s和0.062 g/s。  相似文献   

8.
采用4种不同粒径的Al(MHP)作为环氧树脂(EP)的阻燃剂,着重讨论了Al(MHP)的粒径对EP复合材料的阻燃性能、热性能以及EP胶粘剂的粘接强度的影响。结果表明,减小Al(MHP)的粒径能显著提高EP复合材料的热性能、分解过程中的残炭率以及EP胶粘剂的粘结强度。当Al(MHP)的粒径从36.50μm减小到4.11μm,Al(MHP)含量为17 wt%的EP复合材料的氧指数(LOI)从34%增加到39%,聚合物空气中热分解到700℃时残炭率由23%增加到31%,剪切强度由4.77 MPa增加到8.44 MPa。  相似文献   

9.
以环氧树脂、甲基四氢苯酐、石英砂为主要原料,通过正交实验,采用浇铸法制备了环氧树脂基复合材料,对其硬度、耐强酸强碱性、抗有机溶剂腐蚀性能、热变形温度(0.45 MPa)、复合材料内部有无气泡进行了测试和研究.讨论了环氧树脂、石英砂用量、最终烘烤温度3个因素对复合材料板性能的影响,得到最优化的配方比例.在此基础之上,研究了复合材料板的耐强酸、强碱性和抗有机溶剂腐蚀性.结果表明,环氧树脂添加量为总质量的14%,石英砂用量为总质量的70%,最终烘烤温度200℃,复合材料板巴氏硬度达到54 HBa,热变形温度(0.45 MPa)达到240℃.制备的复合材料板具有较好的耐强酸强碱性和抗有机溶剂腐蚀性能.  相似文献   

10.
通过对C/C复合材料力学性、断裂性、导热性、热弯曲强度、氧化性及烧蚀性几方面性能进行详细归纳,总结出其具有其他材料不可替代的独特性能。深入解析了C/C复合材料在单晶硅制造中作为热场材料应用的可能性乃至必要性,提出C/C复合材料终将取代石墨材料成为制造大型单晶炉隔热部件的首选材料。  相似文献   

11.
汽车摩擦材料树脂基体的选择   总被引:1,自引:1,他引:0  
通过对5种不同树脂基体的热性能和以其为基体的摩擦材料的力学性能及摩擦磨损性能研究,得出如下结论:在所研究的树脂中,其热分解温度都较高.其中进口环氧改性树脂、国内吉林产酚醛树脂和浙江产腰果壳油改性酚醛树脂的热分解温度都超过520℃,且前二者在500℃时热分解余重都超过70%,说明这两类树脂热分解温度高,分解缓慢,是一种较理想的树脂基体材料.从冲击强度、三点弯曲性能、硬度等力学性能指标考虑,以上3种树脂基体也较优.从摩擦磨损性能看,进口漆树粉改性树脂及吉林产树脂有较高且稳定的摩擦因数、热衰退较小.综合各种性能指标,树脂粘结剂以国产酚醛树脂、进口环氧改性树脂和漆树粉改性树脂为佳.  相似文献   

12.
利用带有温度控制装置的分离式霍普金森杆(SHPB)测试碳纤维平纹织物/环氧树脂层压复合材料的冲击压缩性能,分析温度和应变率对碳纤维平纹织物/环氧树脂层压复合材料压缩性能的影响.结果表明:温度和应变率对碳纤维平纹织物/环氧树脂层压复合材料的面外冲击压缩模量、最大应力及破坏形态都有很大影响.随着温度的增加,纤维与树脂界面变弱,最大应力减小,压缩模量减小;随着应变率的增加,最大应力增加,压缩模量变大.通过扫描电子显微镜(SEM)观察发现,纤维与树脂界面在100℃时发生变化,有大量纤维束从经、纬纱中被拉出,导致纤维束无规则断裂.  相似文献   

13.
桐油改性酚醛树脂的制备及其性能   总被引:3,自引:0,他引:3  
利用桐油改性酚醛树脂(PF),制备高性能摩阻材料用树脂基体.综合热分析表明改性PF在100~320 ℃间失重7.30%, 320~600 ℃间失重61.10%,普通PF分别失重15.94%和73.51%;普通PF热分解峰为400~425 ℃和540~600 ℃,桐油改性PF热分解峰为400~450 ℃和560~600 ℃.桐油改性PF热稳定性能得到很大提高,但耐热性能未有明显改善.FTIR分析表明桐油成为聚合物结构的一部分;力学测试结果表明桐油改性较大程度地改善了PF的韧性;掺杂质量分数40%的桐油改性PF和60%的硼改性PF的试样综合力学性能较好,更适合作为摩阻材料的树脂基体.  相似文献   

14.
以原位法制备了SiO2/杂化酚醛复合材料。采用热分析系统,对SiO2/杂化酚醛进行了DSC/TG曲线研究,展示了它的热解动态。结果表明其耐热性均显著优于普通的酚醛树脂,纳米SiO2/杂化酚醛的初始热分解温度为450℃,当热分解温度≥700℃时,残碳率≥60%,用此复合材料作为基体树脂制备的无石棉编织型制动带,低温摩擦系数达0.40以上,高温摩擦系数可达0.25以上,且摩擦系数恢复性良好。  相似文献   

15.
研究了一种以莫来石、堇青石和铝酸盐水泥为主要原料的铝硅系耐火材料.在耐火材料力学性能、热性能、耐盐雾性能和老化性能测试和研究的基础上,将研制的耐火材料应用于长征5号火箭发射台.研究结果表明:该耐火材料的常温抗折强度为9.1MPa,常温耐压强度65.7MPa,耐火度1 580℃,导热系数0.762W/(m·K),热膨胀系数α_(1 000℃)=3.40×10~(-6)/℃,α_(200℃)=5.30×10~(-6)/℃;耐火材料经氧气-煤油缩比发动机烧蚀后,线烧蚀率为0.860mm/s,质量烧蚀率为31.40g/s,6mm厚的钢板在30mm厚的耐火材料保护下,400s内其背面温度不超过60℃;耐火材料具有良好的耐盐雾性能和老化性能.该耐火材料可应用于长征5号火箭发射台钢结构的热防护,火箭发射后耐火材料的脱落面积不超过总面积的10%.  相似文献   

16.
研究了采用真空热压法制备的2024Al/Gr/SiC_p复合材料高温拉伸性能及长时间热暴露后的室温力学性能,同时对拉伸断口进行分析,探讨了SiC颗粒和石墨对材料耐热性能的影响.结果表明:2024基体合金和2024Al/Gr/SiC_p复合材料在200℃及以下热暴露时,复合材料的强度下降幅度较小,但基体合金的强度下降幅度明显比复合材料的大,这与增强相SiC颗粒与石墨提高了材料的耐热性能有关.在300℃热暴露条件下,2024基体合金和2024Al/Gr/SiC_p复合材料的力学性能快速下降.2024Al及其复合材料的高温拉伸性能随拉伸温度升高而下降,在200℃及以下温度抗拉强度较好,250℃及以上温度抗拉强度快速下降.高温拉伸和热暴露处理后的2024铝合金基体的断裂机制为韧性断裂,2024Al/Gr/SiC_p复合材料的断裂机制为基体韧性断裂及石墨断裂、SiC颗粒与界面分离的混合断裂机制.  相似文献   

17.
C/C和C/C-SiC复合材料的氧化及烧蚀性能   总被引:4,自引:0,他引:4  
用液相浸渍.裂解聚硅烷工艺制备了C/C-SiC复合材料,对比了C/C与C/C-SiC复合材料的氧化及烧蚀性能,用扫描电镜(SEM)和X射线衍射(XRD)分析了氧化与烧蚀前后的微观结构及物相变化.结果表明:C/C-SiC复合材料使C/C复合材料的氧化起始温度从500℃提高到700℃;在600℃和700℃恒温氧化条件下,C/C-SiC复合材料比C/C复合材料的氧化速率分别降低38%和47%,失重率分别降低35%和47%;C/C-SiC复合材料的耐烧蚀性能优于C/C复合材料.  相似文献   

18.
以正硅酸乙酯(TEOS)、仲丁醇铝(ASB)为前驱体,采用溶胶-凝胶及超临界干燥工艺,分别制备硅酸铝纤维(ASF)、Al_2O_3纤维(AF)和莫来石纤维(MF)增强Al_2O_3-SiO_2气凝胶(ASC)隔热复合材料,并对材料的微观结构、耐温性、高温热导率和力学性能进行研究。结果表明:纳米多孔Al_2O_3-SiO_2气凝胶均匀填充到纤维间的孔隙中,并紧密包裹在纤维的表面,显著减少了纤维间的搭接,Al_2O_3-SiO_2气凝胶隔热复合材料中的纤维增强相发挥了增强、增韧功能。纤维种类对材料耐温性、高温热导率有较大的影响,对力学性能影响较小,AF/ASC和MF/ASC复合材料耐温性能较高,经1 200℃、30 min热处理后,材料厚度方向平均线收缩率分别为-2.5%和2.7%;MF/ASC复合材料的热导率较低,当热面温度为1 100℃时热导率达到0.065 W/(m·K);3种纤维增强Al_2O_3-SiO_2气凝胶隔热复合材料的力学性能相当,材料3%应变的压缩应力分别为0.22、0.21和0.19 MPa。  相似文献   

19.
采用压缩试验方法研究了湿热环境对机织碳纤维环氧复合材料压缩性能的影响。对干态、湿态复合材料层板进行了不同温度下的压缩试验。分析了该复合材料的吸湿特性、不同湿热环境下的压缩性能及破坏模式。吸湿试验结果表明:机织碳纤维环氧复合材料的平衡吸湿率在0.88%左右。吸湿后试样表面变的较为光滑,存在一些树脂破坏,有少量纤维拔出;并发生了界面破坏。压缩试验结果表明:湿热环境对该复合材料压缩性能的影响较为显著,湿热会降低由基体性能主导的压缩强度,130℃下湿态试样的压缩强度保持率约为65%。纤维与基体的结合强度对压缩破坏模式有重要的影响,湿热条件下由于纤维与基体的结合强度降低,侧面断口出现分层破坏现象。  相似文献   

20.
通过正交试验得出钼改性高邻位酚醛树脂(o-MoPR)的最佳合成工艺参数,并制得了重均分子质量为4 255g/mol的o-MoPR,采用熔融纺丝进一步交联处理制得了钼改性高邻位酚醛纤维(oMoPF).对制得的钼改性高邻位酚醛树脂及其纤维进行了结构性能表征,发现钼元素已连接到酚醛树脂的分子链中.研究获得了熔融纺丝初生酚醛纤维的最佳交联浴升温速率为25℃/h,最佳热处理温度为170℃.研究发现钼改性和高邻位化可使酚醛纤维的力学性能和热性能得到较大提高.o-MoPF的拉伸强度比常规酚醛纤维(PF)提升了21 MPa,达到了185 MPa,o-MoPF在N2气氛中的初始分解温度达到535℃,800℃残余质量分数为78%,分别比PF提高了123℃和33%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号