首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
MH/Ni电池是一种正在发展中的新型高容量绿色二次电池 .电池采用正极限容设计 ,负极过量 ,因此电池的容量主要由正极来决定 .本文评述了目前 MH/Ni电池中所用镍电极材料的分类、晶体结构、制备方法以及国内外的研究现状 .  相似文献   

2.
刘长久  尚伟 《广西科学》2005,12(2):135-140
综述MH/Ni电池正极材料氢氧化镍的结构、性质和制备方法,并详细介绍影响镍正极性能的因素。  相似文献   

3.
采用化学气相沉积法制备碳纳米管,将碳纳米管作为添加剂掺杂制备MH/Ni电池正极,研究了正极中添加不同含量在不同充放电制度下对电化学性能的影响. 结果表明,在30 mA/g恒电流放电条件下,添加了碳纳米管的模拟电池放电性能并没有得到改善,而且比没有添加的要差些;但在60 mA/g恒电流放电条件下,添加碳纳米管的作用比较明显,添加量为质量分数1%的碳纳米管电化学性能较好,在第40和80次循环时放电容量分别为272.2 mAh/g 和260.3 mAh/g,而且放电平台比较平稳.  相似文献   

4.
采用高温固相合成法制备(MoO3)1-x(NiO)x (x=0.00, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,其中MoO3溶胶是由钼酸铵通过离子交换法制得.通过X-射线衍射分析(XRD)、扫描电镜测试(SEM)、充放电测试、循环伏安和交流阻抗等测试方法考察了镍掺杂对MoO3正极材料结构、形貌以及电化学性能的影响.结果表明,通过镍掺杂正极材料展示了较好的电化学性能.其中掺杂量为0.03的样品展示了最高的首次放电容量,其首次放电容量为295.9 mAh/g.  相似文献   

5.
碳纳米管的电化学储氢   总被引:3,自引:0,他引:3  
用电化学方法使碳纳米管储氢,是把碳纳米管当作储氢负极,形成Ni MH电池·用碳纳米管与镍纳米粉做成负极试样,电解液采用KOH溶液·实验中,对Ni MH电池充放电的50个循环进行测试,通过测量电池的充放电容量和能量,来测量碳纳米管的储氢性能·测试过程由Arbin公司的BF 2043系列电池测试系统控制·实验表明,相对每克碳纳米管,当充电电流为120mA时,电池容量可达126 368mA·h·g-1,而且电池放电非常平稳,放电平台利用率高达97%·可见,碳纳米管是一种很有前途的储氢材料·本研究对利用碳纳米管制做储氢电池提供了实验依据·  相似文献   

6.
以化学气相沉积法制备的三维网状石墨烯/泡沫镍(3DGE/NF)为基底,电化学沉积Ni掺杂Co(OH)2纳米片得到三维镍钴双氢氧化物/石墨烯/泡沫镍(3D NixCo1-x(OH)2/GE/NF)复合电极材料,研究Ni掺杂量对材料的形貌及电化学性能的影响.结果表明:在Co(OH)2中掺杂适量的Ni可以改善材料的表面形貌;高质量、高导电性石墨烯的存在促进电极与电解液的电荷传输,加上镍钴的协同作用,能有效提高材料的比容量和循环倍率性能.当Ni掺杂量为34%时,3D Ni0.34Co0.66(OH)2/GE/NF复合电极材料具有最佳的电化学性能,当电流密度为3 A/g时,其在1mol/L的KOH电解液中比容量达到1 714F/g,当电流密度升高到30A/g时比容量仍保持有73%达到1 254F/g,显示出较好的倍率性,且在10A/g的大电流密度下经过500次循环后,比容量保持率为83%.  相似文献   

7.
采用固相合成法制备了锂离子电池用尖晶石型LiMn2O4正极材料,并通过同时加入Cr3 和F对材料进行了体相掺杂改性.用扫描电子显微镜和X射线衍射研究了材料的表面形貌和晶体结构,用充放电循环实验对制备的锂离子电池性能进行了测试.结果表明:未掺杂的LiMn2O4正极材料首次放电容量为115.3mAh·g-1,循环25次后容量降为96mAh·g-1;掺杂Cr3 和F的材料同样具有尖晶石型结构,随掺杂量增加,首次放电容量略有降低,但循环性能有较明显改善,充放电效率提高,其中掺杂量为0.10的样品首次放电容量为111.5 mAh·g-1,循环25次后容量保持率达91.8%.  相似文献   

8.
采用液相共沉淀法与高温固相法合成了La2O3包覆Li(Ni1/3 Co1/3 Mn1/3 )O2的锂离子电池正极材料,采用XRD和电化学方法表征了材料的结构与电化学性能.结果表明,在1 000 ℃焙烧10 h制备的Li(Ni1/3 Co1/3 Mn1/3 )O2材料经包覆2%的La2O3后,具有较佳的电化学性能.其0.1 C倍率首次放电容量和首次充放电效率分别为151.2 mAh·g-1 和83 8%,首次循环后的交流阻抗为162.2 Ω,以0.2 C倍率循环20次后的放电容量为140.7 mAh·g-1 .  相似文献   

9.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

10.
为研究离子掺杂对锂离子正极材料LiNi1/3Co1/3Mn1/3O2的影响,采用氢氧化物共沉淀法制备了Ti4+掺杂改性的锂离子正极材料LiNi1/3-1/40Co1/3Mn1/3Ti1/40O2、LiNi1/3-Co1/3-1/40Mn1/3Ti1/40O2和LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2,并运用X射线衍射仪和扫描电子显微镜对Ti掺杂改性后正极材料的晶型和微观结构进行表征,通过高精度电池性能检测系统对正极材料的电化学性能进行检测.结果表明:Ti分别取代Ni、Co和Mn对三元复合正极材料进行掺杂改性后,改性材料都保持典型的α-NaFeO2层状结构,且晶型良好;LiNi1/3-Co1/3Mn1/3-1/40Ti1/40O2轮廓最分明,且形貌均一;3种改性材料的电化学性能均有一定程度的提高,其中LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2提高最为明显,在0.1 C、1.0 C和2.0 C倍率下其首次放电比容量分别为145.35、140.79和125.60 mA.h/g,1.0 C倍率下循环30次后的容量保持率为88.06%.  相似文献   

11.
用电化学阻抗谱(EIS)方法,对金属氢化物(MH)电极和两种商品化金属氢化物/镍(MH/Ni)电池性能进行了研究,通过建立等效电路模型分析了MH电极的电化学阻抗谱,结果表明,在不同放电深度和充放电循环时,电极的欧姆阻抗,反应电阻和界面电容等呈规律地变化,并与电极性能的变化相一致,欧姆阻抗和由制备工艺带来的电极反应性能折差别,是引起两种商品化MH/Ni电池电化学充放电性能差别的主要原因,也说明EIS可用于检测MH电极的荷电状态和反应性能,并可作为在线无损伤MH/Ni电池性能测试技术。  相似文献   

12.
采用球磨复合+烧结处理(BMS)及机械复合+烧结处理(MMS)两种方法制备了Zr0.9Ti0.1(Ni0.57V0.10Mn0.28Co0.05)2.1 X%Mg(X=10,20)锆基纳米复合储氢材料·经XRD、TEM SAED分析表明,BMS和MMS的复合储氢材料皆由MgCu2型立方结构的单一C15 Laves相Zr基合金和密排六方结构的Mg金属构成,未发现两者之间的合金化效应·电化学测试表明,在60mA/g电流密度下,复合材料(MMS、BMS)活化性能好·MMS电极的最大放电容量为410mAh/g(X=20),而BMS的放电容量为360mAh/g(X=20)·在大电流密度下(≥3000mA...  相似文献   

13.
锂离子电池正极材料LiFePO4的合成及电化学性能   总被引:1,自引:0,他引:1  
采用固相合成法在不同温度制度下合成掺杂碳的LiFePO4正极材料,计算出各样品的结构参数并对各样品进行电化学测试·结构参数的计算结果表明:合成温度升高,样品的结晶程度更好,结构更紧凑,更趋稳定·电化学测试结果说明:700℃合成的产物具有良好的电化学性能,在0 1C倍率下放电,其室温初始放电容量为140 4mAh/g,循环10次后容量衰减较小·此条件合成的LiFePO4放电容量与目前工业化生产的LiCoO2相当,具有良好的应用前景·  相似文献   

14.
为了提高MH/Ni电池储氢合金电极的导电性,运用真空蒸镀法在电极表面镀覆了一层金属Cu膜,利用XRD、XPS、SEM等方法对极片进行了分析,结果表明,在极片表面镀覆一层金属Cu膜不会对储氢合金的体相结构产生影响.电化学性能测试表明:极片经过修饰的电池,内阻降低了32.8%,5 C放电容量增加了190 mA·h, 放电平台电压提高了0.10 V,同时,充电时的内压也有明显降低,充电效率有较大提高.  相似文献   

15.
锂离子电池氧化物负极材料的研究   总被引:7,自引:1,他引:6  
采用氨解法制备了SnO,Sb2O3,GeO23种氧化物粉末,将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究其电化学性能·研究发现,这3种活性物质有较高的电化学容量,其首次放电容量分别为1520mAh/g(GeO2),820mAh/g(Sb2O3),1040mAh/g(SnO);首次充电容量分别为800mAh/g(GeO2),520mAh/g(Sb2O3),800mAh/g(SnO)·同时还发现其不可逆容量损失也较大,讨论了产生这一结果的可能原因,提出了减少不可逆容量损失的办法·  相似文献   

16.
采用SEM,XRD,TEM以及EIS等检测方法,研究不同过充循环前后MH/Ni电池性能与正负极材料形貌及表面元素的变化.实验结果表明,经正常充放电循环70周后,正极活性物质表面保持良好的球形形貌,而经持续过充电循环相同次数后,因晶格的不可逆膨胀而呈不同程度破裂,储氢合金颗粒并无明显粉化现象,但其表面却覆盖许多绒状或针状物,经能谱检测,该绒状物主要成分为稀土金属的氢氧化物或氧化物.EIS阻抗谱分析表明,电池的欧姆电阻(Rs)、反应电阻(Rt)和Warburg阻抗(Zw)均有不同程度的增加,而界面电容(Ci)则呈逐渐降低趋势,这些均是最终导致电池电化学性能衰减的原因.  相似文献   

17.
锂离子电池正极材料锂钒氧的固相合成   总被引:1,自引:1,他引:0  
以Li2CO3和V2O5为原料,进行了固相法制备锂离子电池正极材料Li1+xV3O8的实验研究.通过TG-DTA,XRD及交流阻抗等测试方法考察了合成条件对Li1+xV3O8样品结构、电导率及电化学性能的影响.XRD结果表明:随着焙烧温度的提高,产物的(100)衍射峰相对强度增强,这使Li+在LiV3O8中嵌入脱出的路径较长.交流阻抗测试表明:随着烧结温度的提高,电导率增大,而随着烧结时间的延长,电导率出现先增大而后又减小的趋势.电化学测试结果表明,580℃焙烧20 h合成的产物具有优良的电化学性能,放电比容量最高达到254.0 mAh.g-1,10次循环后仍保持在245.6 mAh.g-1,...  相似文献   

18.
以Li_2CO_3和NH_4VO_3为原料,采用非熔融态的固相反应法合成了锂离子电池正极材料锂钒氧化物.通过TG-DTA,XRD分析确定了合成反应的主要历程.XRD测试表明,580℃焙烧10h获得的产物为单一相层状结构,晶型发育良好.循环伏安测试表明,Li~+在材料中嵌入脱出的机理不同,嵌入是分步进行的.恒电流充放电测试表明,锂钒氧化物的初始容量为252.9mAh.g-1,55次循环后容量保持率高达97.07%,循环性能优良.交流阻抗测试表明,材料具有较高的离子电导率,有利于提高其电化学性能.  相似文献   

19.
采用了一种工业副产品的纳米碳粉作为锂离子电池的负极材料,对纳米碳粉进行了提纯,测定了纳米碳粉的纯度,并对提纯后的纳米碳粉进行了电化学嵌锂性能的研究·充放电实验结果表明,该碳材料首次放电比容量为358 3mA·h/g,首次循环可逆容量为336 4mA·h/g,循环9次后可逆容量保持率为76 1%·TEM观察纳米碳粉的形貌,表明纳米碳粉为球形,直径在30nm左右;XRD测定纳米碳粉的结构,纳米碳粉的d002值介于石墨和软碳材料的d002值之间,为0 3481nm·  相似文献   

20.
尖晶石型LiMn2O4的溶胶凝胶法制备   总被引:5,自引:1,他引:5  
采用溶胶 凝胶法合成了锂离子电池正极材料LiMn2O4·研究了干凝胶制备锰酸锂的机理·由于干凝胶燃烧时生成的产物颗粒很细,燃烧过程中就有大量的锰酸锂生成,剩下的Mn3O4和Li2O2在300℃左右已完全转化为锰酸锂,大大降低了合成温度·通过对700℃合成的锰酸锂XRD分析表明,样品的衍射峰峰形尖锐,晶型发育良好·考察了pH值对合成样品粒度及电化学性能的影响,SEM分析表明,随pH值增加,所得溶胶制备的锰酸锂电化学容量增加,当pH=6 0时合成样品颗粒分布均匀,达到亚微米级·以0 1C的电流、电压范围3 30~4 35V充放电测试表明,该条件下合成的样品初始放电容量为121.0mAh·g-1,显...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号