首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prominent type of scientific realism holds that some important parts of our best current scientific theories are at least approximately true. According to such realists, radically distinct alternatives to these theories, or theory-parts, are unlikely to be approximately true. Thus, one might be tempted to argue, as the prominent anti-realist Kyle Stanford recently did, that realists of this kind have little or no reason to encourage scientists to attempt to identify and develop theoretical alternatives that are radically distinct from currently accepted theories in the relevant respects. In other words, it may seem that realists should recommend that scientists be relatively conservative in their theoretical endeavors. This paper aims to show that this argument is mistaken. While realists should indeed be less optimistic of finding radically distinct alternatives to replace current theories, realists also have greater reasons to value the outcomes of such searches. Interestingly, this holds both for successful and failed attempts to identify and develop such alternative theories.  相似文献   

2.
Inferences from scientific success to the approximate truth of successful theories remain central to the most influential arguments for scientific realism. Challenges to such inferences, however, based on radical discontinuities within the history of science, have motivated a distinctive style of revision to the original argument. Conceding the historical claim, selective realists argue that accompanying even the most revolutionary change is the retention of significant parts of replaced theories, and that a realist attitude towards the systematically retained constituents of our scientific theories can still be defended. Selective realists thereby hope to secure the argument from success against apparent historical counterexamples. Independently of that objective, historical considerations have inspired a further argument for selective realism, where evidence for the retention of parts of theories is itself offered as justification for adopting a realist attitude towards them. Given the nature of these arguments from success and from retention, a reasonable expectation is that they would complement and reinforce one another, but although several theses purport to provide such a synthesis the results are often unconvincing. In this paper I reconsider the realist’s favoured type of scientific success, novel success, offer a revised interpretation of the concept, and argue that a significant consequence of reconfiguring the realist’s argument from success accordingly is a greater potential for its unification with the argument from retention.  相似文献   

3.
I began this study with Laudan's argument from the pessimistic induction and I promised to show that the caloric theory of heat cannot be used to support the premisses of the meta-induction on past scientific theories. I tried to show that the laws of experimental calorimetry, adiabatic change and Carnot's theory of the motive power of heat were (i) independent of the assumption that heat is a material substance, (ii) approximately true, (iii) deducible and accounted for within thermodynamics.I stressed that results (i) and (ii) were known to most theorists of the caloric theory and that result (iii) was put forward by the founders of the new thermodynamics. In other words, the truth-content of the caloric theory was located, selected carefully, and preserved by the founders of thermodynamics.However, the reader might think that even if I have succeeded in showing that laudan is wrong about the caloric theory, I have not shown how the strategy followed in this paper can be generalised against the pessimistic meta-induction. I think that the general strategy against Laudan's argument suggested in this paper is this: the empirical success of a mature scientific theory suggests that there are respects and degrees in which this theory is true. The difficulty for — and and real challenge to — philosophers of science is to suggest ways in which this truth-content can be located and shown to be preserved — if at all — to subsequent theories. In particular, the empirical success of a theory does not, automatically, suggest that all theoretical terms of the theory refer. On the contrary, judgments of referential success depend on which theoretical claims are well-supported by the evidence. This is a matter of specific investigation. Generally, one would expect that claims about theoretical entities which are not strongly supported by the evidence or turn out to be independent of the evidence at hand, are not compelling. For simply, if the evidence does not make it likely that our beliefs about putative theoretical entities are approximately correct, a belief in those entities would be ill-founded and unjustified. Theoretical extrapolations in science are indespensable , but they are not arbitrary. If the evidence does not warrant them I do not see why someone should commit herself to them. In a sense, the problem with empricist philisophers is not that they demand that theoretical beliefs must be warranted by evidence. Rather, it is that they claim that no evidence can warrant theorretical beliefs. A realist philosopher of science would not disagree on the first, but she has good grounds to deny the second.I argued that claims about theoretical entities which are not strongly supported by the evidence must not be taken as belief-worthy. But can one sustaon the more ambitious view that loosely supported parts of a theory tend to be just those that include non-referring terms? There is an obvious excess risk in such a generalisation. For there are well-known cases in which a theoretical claim was initially weakly supported by the evidence  相似文献   

4.
The goal of this paper, both historical and philosophical, is to launch a new case into the scientific realism debate: geocentric astronomy. Scientific realism about unobservables claims that the non-observational content of our successful/justified empirical theories is true, or approximately true. The argument that is currently considered the best in favor of scientific realism is the No Miracles Argument: the predictive success of a theory that makes (novel) observational predictions while making use of non-observational content would be inexplicable unless such non-observational content approximately corresponds to the world “out there”. Laudan's pessimistic meta-induction challenged this argument, and realists reacted by moving to a “selective” version of realism: the approximately true part of the theory is not its full non-observational content but only the part of it that is responsible for the novel, successful observational predictions. Selective scientific realism has been tested against some of the theories in Laudan's list, but the first member of this list, geocentric astronomy, has been traditionally ignored. Our goal here is to defend that Ptolemy's Geocentrism deserves attention and poses a prima facie strong case against selective realism, since it made several successful, novel predictions based on theoretical hypotheses that do not seem to be retained, not even approximately, by posterior theories. Here, though, we confine our work just to the detailed reconstruction of what we take to be the main novel, successful Ptolemaic predictions, leaving the full analysis and assessment of their significance for the realist thesis to future works.  相似文献   

5.
The view that the fundamental kind properties are intrinsic properties enjoys reflexive endorsement by most metaphysicians of science. But ontic structural realists deny that there are any fundamental intrinsic properties at all. Given that structuralists distrust intuition as a guide to truth, and given that we currently lack a fundamental physical theory that we could consult instead to order settle the issue, it might seem as if there is simply nowhere for this debate to go at present. However, I will argue that there exists an as-yet untapped resource for arguing for ontic structuralism – namely, the way that fundamentality is conceptualized in our most fundamental physical frameworks. By arguing that physical objects must be subject to the ‘Goldilock's principle’ if they are to count as fundamental at all, I argue that we can no longer view the majority of properties defining them as intrinsic. As such, ontic structural realism can be regarded as the most promising metaphysics for fundamental physics, and that this is so even though we do not yet claim to know precisely what that fundamental physics is.  相似文献   

6.
Recent literature in the scientific realism debate has been concerned with a particular species of statistical fallacy concerning base-rates, and the worry that no matter how predictively successful our contemporary scientific theories may be, this will tell us absolutely nothing about the likelihood of their truth if our overall sample space contains enough empirically adequate theories that are nevertheless false. In response, both realists and anti-realists have switched their focus from general arguments concerning the reliability and historical track-records of our scientific methodology, to a series of specific arguments and case-studies concerning our reasons to believe individual scientific theories to be true. Such a development however sits in tension with the usual understanding of the scientific realism debate as offering a second-order assessment of our first-order scientific practices, and threatens to undermine the possibility of a distinctive philosophical debate over the approximate truth of our scientific theories. I illustrate this concern with three recent attempts to offer a more localised understanding of the scientific realism debate—due to Stathis Psillos, Juha Saatsi, and Kyle Stanford—and argue that none of these alternatives offer a satisfactory response to the problem.  相似文献   

7.
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure.  相似文献   

8.
One way to reconstruct the miracle argument for scientific realism is to regard it as a statistical inference: since it is exceedingly unlikely that a false theory makes successful predictions, while it is rather likely that an approximately true theory is predictively successful, it is reasonable to infer that a predictively successful theory is at least approximately true. This reconstruction has led to the objection that the argument embodies a base rate fallacy: by focusing on successful theories one ignores the vast number of false theories some of which will be successful by mere chance.In this paper, I shall argue that the cogency of this objection depends on the explanandum of the miracle argument. It is cogent if what is to be explained is the success of a particular theory. If, however, the explanandum of the argument is the distribution of successful predictions among competing theories, the situation is different. Since the distribution of accidentally successful predictions is independent of the base rate, it is possible to assess the base rate by comparing this distribution to the empirically found distribution of successful predictions among competing theories.  相似文献   

9.
10.
The main purpose of this paper is to test structural realism against (one example from) the historical record. I begin by laying out an existing challenge to structural realism – that of providing an example of a theory exhibiting successful structures that were abandoned – and show that this challenge can be met by the miasma theory of disease. However, rather than concluding that this is an outright counterexample to structural realism, I use this case to show why it is that structural realism, in its current form, has trouble dealing with theories outside physics. I end by making some concrete suggestions for structural realists to pursue if, indeed, they are serious about extending structural realism to other domains.  相似文献   

11.
In this paper I challenge and adjudicate between the two positions that have come to prominence in the scientific realism debate: deployment realism and structural realism. I discuss a set of cases from the history of celestial mechanics, including some of the most important successes in the history of science. To the surprise of the deployment realist, these are novel predictive successes toward which theoretical constituents that are now seen to be patently false were genuinely deployed. Exploring the implications for structural realism, I show that the need to accommodate these cases forces our notion of “structure” toward a dramatic depletion of logical content, threatening to render it explanatorily vacuous: the better structuralism fares against these historical examples, in terms of retention, the worse it fares in content and explanatory strength. I conclude by considering recent restrictions that serve to make “structure” more specific. I show however that these refinements will not suffice: the better structuralism fares in specificity and explanatory strength, the worse it fares against history. In light of these case studies, both deployment realism and structural realism are significantly threatened by the very historical challenge they were introduced to answer.  相似文献   

12.
I revisit an older defense of scientific realism, the methodological defense, a defense developed by both Popper and Feyerabend. The methodological defense of realism concerns the attitude of scientists, not philosophers of science. The methodological defense is as follows: a commitment to realism leads scientists to pursue the truth, which in turn is apt to put them in a better position to get at the truth. In contrast, anti-realists lack the tenacity required to develop a theory to its fullest. As a consequence, they are less likely to get at the truth.My aim is to show that the methodological defense is flawed. I argue that a commitment to realism does not always benefit science, and that there is reason to believe that a research community with both realists and anti-realists in it may be better suited to advancing science. A case study of the Copernican Revolution in astronomy supports this claim.  相似文献   

13.
Most scientific realists today in one way or another confine the object of their commitment to certain components of a successful theory and thereby seek to make realism compatible with the history of theory change. Kyle Stanford calls this move by realists the strategy of selective confirmation and raises a challenge against its contemporary, reliable applicability. In this paper, I critically examine Stanford's inductive argument that is based on past scientists' failures to identify the confirmed components of their contemporary theories. I argue that our ability to make such identification should be evaluated based on the performance of the scientific community as a whole rather than that of individual scientists and that Stanford's challenge fails to raise a serious concern because it focuses solely on individual scientists' judgments, which are either made before the scientific community has reached a consensus or about the value of the posit as a locus for further research rather than its confirmed status.  相似文献   

14.
In this paper, three theories of progress and the aim of science are discussed: (i) the theory of progress as increasing explanatory power, advocated by Popper in The logic of scientific discovery (1935/1959); (ii) the theory of progress as approximation to the truth, introduced by Popper in Conjectures and refutations (1963); (iii) the theory of progress as a steady increase of competing alternatives, which Feyerabend put forward in the essay “Reply to criticism. Comments on Smart, Sellars and Putnam” (1965) and defended as late as the last edition of Against method (1993). It is argued that, contrary to what Feyerabend scholars have predominantly assumed, Feyerabend's changing attitude towards falsificationism—which he often advocated at the beginning of his career, and vociferously attacked in the 1970s and 1980s—must be explained by taking into account not only Feyerabend's very peculiar view of the aim of science, but also Popper's changing account of progress.  相似文献   

15.
This paper defends the deflationary character of two recent views regarding scientific representation, namely RIG Hughes' DDI model and the inferential conception. It is first argued that these views' deflationism is akin to the homonymous position in discussions regarding the nature of truth. There, we are invited to consider the platitudes that the predicate “true” obeys at the level of practice, disregarding any deeper, or more substantive, account of its nature. More generally, for any concept X, a deflationary approach is then defined in opposition to a substantive approach, where a substantive approach to X is an analysis of X in terms of some property P, or relation R, accounting for and explaining the standard use of X. It then becomes possible to characterize a deflationary view of scientific representation in three distinct senses, namely: a “no-theory” view, a “minimalist” view, and a “use-based” view—in line with three standard deflationary responses in the philosophical literature on truth. It is then argued that both the DDI model and the inferential conception may be suitably understood in any of these three different senses. The application of these deflationary ‘hermeneutics’ moreover yields significant improvements on the DDI model, which bring it closer to the inferential conception. It is finally argued that what these approaches have in common—the key to any deflationary account of scientific representation—is the denial that scientific representation may be ultimately reduced to any substantive explanatory property of sources, or targets, or their relations.  相似文献   

16.
Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories.  相似文献   

17.
Scientists often diverge widely when choosing between research programs. This can seem to be rooted in disagreements about which of several theories, competing to address shared questions or phenomena, is currently the most epistemically or explanatorily valuable—i.e. most successful. But many such cases are actually more directly rooted in differing judgments of pursuit-worthiness, concerning which theory will be best down the line, or which addresses the most significant data or questions. Using case studies from 16th-century astronomy and 20th-century geology and biology, I argue that divergent theory choice is thus often driven by considerations of scientific process, even where direct epistemic or explanatory evaluation of its final products appears more relevant. Broadly following Kuhn's analysis of theoretical virtues, I suggest that widely shared criteria for pursuit-worthiness function as imprecise, mutually-conflicting values. However, even Kuhn and others sensitive to pragmatic dimensions of theory ‘acceptance’, including the virtue of fruitfulness, still commonly understate the role of pursuit-worthiness—especially by exaggerating the impact of more present-oriented virtues, or failing to stress how ‘competing’ theories excel at addressing different questions or data. This framework clarifies the nature of the choice and competition involved in theory choice, and the role of alternative theoretical virtues.  相似文献   

18.
19.
The considerations set out in the paper are intended to suggest that in practical contexts predictive power does not play the outstanding roles sometimes accredited to it in an epistemic framework. Rather, predictive power is part of a network of other merits and achievements. Predictive power needs to be judged differently according to the specific conditions that apply. First, predictions need to be part of an explanatory framework if they are supposed to guide actions reliably. Second, in scientific expertise, the demand for accurate predictions is replaced with the objective of specifying a robust corridor of estimates. Finally, it is highly uncertain to predict the success of research projects. The overall purpose of the paper is to enlarge the debate about predictions by addressing specifically the roles of predictions in application-oriented research.  相似文献   

20.
According to inference to the best explanation (IBE), scientists infer the loveliest of competing hypotheses, ‘loveliness’ being explanatory virtue. This generates two key objections: that loveliness is too subjective to guide inference, and that it is no guide to truth. I defend IBE using Thomas Kuhn’s notion of exemplars: the scientific theories, or applications thereof, that define Kuhnian normal science and facilitate puzzle-solving. I claim that scientists infer the explanatory puzzle-solution that best meets the standard set by the relevant exemplar of loveliness. Exemplars are the subject of consensus, eliminating subjectivity; divorced from Kuhnian relativism, they give loveliness the context-sensitivity required to be truth-tropic. The resulting account, ‘Kuhnian IBE’, is independently plausible and offers a partial rapprochement between IBE and Kuhn’s account of science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号