首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
定理1.设定义在[1,∞)上的正值函数μ(x)满足下面的条件:(ⅰ)存在N_0>0,使得当x≥N_0时,函数x~2μ(x)是增加的;(ⅱ)存在常数c>1,使得对于一切x,有Aμ(x)≤μ(cx)≤Bμ(x),A>0,B>0。设f(x)∈L~p(0,2π),1p,则当积分integral from n=0 to 1 1/t~2μ(1/t)[integral from n=0 to 2x|f(x t)-f(x-t)|pdx]~(β/p)dt (1) 收敛时,下面的级数收敛: sum from n=1 to ∞μ(n)[sum from k=n to ∞ρ_k~p k~(p-2)]~(β/p),(ρ_k~2=a_k~2 b_k~2) (2) 定理2.设μ(t)是正值函数, Σμ(n)/n~β<∞(β>0),并且存在常数c>0,使得μ(cx)~μ(x),x→∞。令An=sum from k=n to ∞ρ_k~p k~(p-2)。若存在正数α<1,使得An·n~(p-α)当n≥N_0时是增加的,则由(2)的收敛性可以得出(1)的收敛性。  相似文献   

2.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

3.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

4.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

5.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

6.
一、引言如所周知,如果X_1,X_2,…,i、i、d,EX_1=0,EX_1~2=σ~2<∞,则对任何—∞相似文献   

7.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

8.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

9.
李荣华(1956)在他一篇文章中曾证明:设bi≥0,sum from o to ∞ bi=+∞,sum from 0 to ∞bix~i的收敛半径为1,并且1是它在单位圆周上的m级极点;则对[0,1]上的任何有界变差函数f(x),恒可由等式  相似文献   

10.
勒襄特级数     
引言,研究解析函数常用的工具为慕极教 sum(a_nz~n) from n=0 to∞现在我们打算用勒襄特极教sum (a_np_n(z)) from n=0 to∞来代替幕极数作为研究解析函数的工具.首先考察极教(1)的收敛域,为此在z面作椭圆E Z=cosh(α+iβ),这里α是固定正常数, E的参数方程是  相似文献   

11.
此文主要阐述[1]中所得不等式在解析函数上若干重要应用。最后证明一个重要的偏差定理(一)主要依据的不等式定理 H_1 设 P≥Q>0,1/P 1/Q=1,1-C_n-C_m≥0及 A_n,B_n≥0则sum from n to A_nB_n≤(sum from n to B_n~Q)~(1/Q-1/P){(sum from n to B_n~Q sum from n to A_n~P)~2-(sum from n to B_n~Q C_n sum from n to A_n~P-sum from n to A_n~P C_n sum from n to B_n~Q)~2}~1/(2P) (1。1)定理 H_2 又 A(x),B(x)≥0 1-C(x) C(y)≥0  相似文献   

12.
本文应用Fourier级数方法,讨论函数逼近论中Norlund算子 N_n(f,x)=1/P_n sum from k=0 to nP_(n-k)A_k(x)在L_2π可积函数空间中,逼近f(x)的饱和问题。  相似文献   

13.
在本文中给出两种方法来求:当n→∞时, J_n(ω)=integral from n=-1 to 1 ρ(x)((u_n(1)-u_n(x))/(1-x)~ω)dx的渐近表达式,这里u_n(x)为n次多项式,ρ(x)为适当选取的函数在开区间(-1,1)中连续并取正值,ω为适当的正实数。第一种方法利用多项式u_n(x)具有特殊形式的循环公式。第二种方法是:当u_n(x)具有洛巨里格表达式且ω的取值在适当的区间中时,可以求出(?)_n(ω)=integral from n=-1 to1 ρ(x)((u_n(x))/(1-x)~ω)dx,于是利用解析延拓法,当ω的取值在更大的区间中时,可以求出J_n(ω)。利用第二种方法证明了下述定理: 设α≥-1/2且α≥β>-1。令f(x)=sum from n=0 to ∞c_nP_n~((α,β))(x),这里P_n~((α,β))(x)表示雅谷比多项式,如果c_n终规为正,且sum from n=0 to ∞c_nP_n~((α,β))(1)=0, 则按照λ=1或1<λ<2,integral from n=0 to 1 ((f(x)/(1-x)~λ))dx存在的充要条件分别是Σc_nn~αlogn收敛或Σc_nn~(α 2(λ-1))收敛。利用本定理即可推出:作者在函数项级数的积分一文中所证明的关于勒襄特级数及切比晓夫级数的两定理。  相似文献   

14.
本文的主要结果是: 设c_n终规为正。设sum from n=0 to ∞c_n=0。令f(x)=sum from n=0 to ∞c_nu_n(x),这里u_n(x)为勒襄特多项式P_n(x)(n=0,1,2,…)或者为切比晓夫多项式T_n(x)(n=0,1,2,…)。令I(ω)=integral from n=0 to 1 f(x)/(1-x)~ωdx,则按照ω=1或1<ω<2,I(ω)存在的充要条件是∑c_n logn收敛或∑c_nn~(2(ω-1))收敛。  相似文献   

15.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

16.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

17.
S.M.Shah和Herb,Silverman得到设f(z)是下级为有限的整函数,满足sum from a≠∞δ(a,f)=1.令M_o(r)=expT(r,f),M_3(r)={1/(2π)integral from n=0 to 2π|f(re~(iθ))|dθ}~(1/3),0相似文献   

18.
一、引言 设给定x_i i=1,2…m,x_i∈[a,b]及此m个点上数据资料f_i i=1,2,…,m,寻求一函数φ(x)=sum from j=1 to n (α_jφ_j(x)),使sum from i=1 to m(ω(x_i)r_i~2)=sum from i=1 to m(ω(x_i))(f_i-(x)=sum from j=1 to n (α_jφ_j(x_i))~2达到最小,此即是带权ω(x)的线性最小二乘问题,其中ω(x)在[a,b]上定义,α_j是拟合系数,n是拟合阶数。  相似文献   

19.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

20.
傅里叶级数收敛定理的叙述方式很多,下面就是常见的两种.定理1 [迪尼(Dini)定理]设 f(x)是以2π为周期的函数,并且在[-π,π]上可积,假设它在 x 处之广义左、右导数皆存在,则1/2[f(x 0) f(x-0)]=(1/2)a_0 sum from n=1 to ∞(a_ncosnx b_nsinnx).定理2 若以2π为周期的周期函数 f(x)在[-π,π]上按段光滑,则 f(x)的傅里叶级数在每一点  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号