共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved classification device for bankruptcy forecasting is proposed. The proposed approach relies on mainstream classifiers whose inputs are obtained from a so‐called multinorm analysis, instead of traditional indicators such as the ROA ratio and other accounting ratios. A battery of industry norms (computed by using nonparametric quantile regressions) is obtained, and the deviations of each firm from this multinorm system are used as inputs for the classifiers. The approach is applied to predict bankruptcy on a representative sample of Spanish manufacturing firms. Results indicate that our proposal may significantly enhance predictive accuracy, both in linear and nonlinear classifiers. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Ensemble Forecasting for Complex Time Series Using Sparse Representation and Neural Networks 下载免费PDF全文
Based on the concept of ‘decomposition and ensemble’, a novel ensemble forecasting approach is proposed for complex time series by coupling sparse representation (SR) and feedforward neural network (FNN), i.e. the SR‐based FNN approach. Three main steps are involved: data decomposition via SR, individual forecasting via FNN and ensemble forecasting via a simple addition method. In particular, to capture various coexisting hidden factors, the effective decomposition tool of SR with its unique virtues of flexibility and generalization is introduced to formulate an overcomplete dictionary covering diverse bases, e.g. exponential basis for main trend, Fourier basis for cyclical (and seasonal) features and wavelet basis for transient actions, different from other techniques with a single basis. Using crude oil price (a typical complex time series) as sample data, the empirical study statistically confirms the superiority of the SR‐based FNN method over some other popular forecasting models and similar ensemble models (with other decomposition tools). Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
We studied the predictability of intraday stock market returns using both linear and nonlinear time series models. For the S&P 500 index we compared simple autoregressive and random walk linear models with a range of nonlinear models, including smooth transition, Markov switching, artificial neural network, nonparametric kernel regression and support vector machine models for horizons of 5, 10, 20, 30 and 60 minutes. The empirical results indicate that nonlinear models outperformed linear models on the basis of both statistical and economic criteria. Specifically, although return serial correlation receded by around 10 minutes, return predictability still persisted for up to 60 minutes according to nonlinear models, even though profitability decreases as time elapses. More flexible nonlinear models such as support vector machines and artificial neural network did not clearly outperform other nonlinear models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Reliable correlation forecasts are of paramount importance in modern risk management systems. A plethora of correlation forecasting models have been proposed in the open literature, yet their impact on the accuracy of value‐at‐risk calculations has not been explicitly investigated. In this paper, traditional and modern correlation forecasting techniques are compared using standard statistical and risk management loss functions. Three portfolios consisting of stocks, bonds and currencies are considered. We find that GARCH models can better account for the correlation's dynamic structure in the stock and bond portfolios. On the other hand, simpler specifications such as the historical mean model or simple moving average models are better suited for the currency portfolio. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
The aim of this paper is to propose a new methodology that allows forecasting, through Vasicek and CIR models, of future expected interest rates based on rolling windows from observed financial market data. The novelty, apart from the use of those models not for pricing but for forecasting the expected rates at a given maturity, consists in an appropriate partitioning of the data sample. This allows capturing all the statistically significant time changes in volatility of interest rates, thus giving an account of jumps in market dynamics. The new approach is applied to different term structures and is tested for both models. It is shown how the proposed methodology overcomes both the usual challenges (e.g., simulating regime switching, volatility clustering, skewed tails) as well as the new ones added by the current market environment characterized by low to negative interest rates. 相似文献
6.
In this paper a nonparametric approach for estimating mixed‐frequency forecast equations is proposed. In contrast to the popular MIDAS approach that employs an (exponential) Almon or Beta lag distribution, we adopt a penalized least‐squares estimator that imposes some degree of smoothness to the lag distribution. This estimator is related to nonparametric estimation procedures based on cubic splines and resembles the popular Hodrick–Prescott filtering technique for estimating a smooth trend function. Monte Carlo experiments suggest that the nonparametric estimator may provide more reliable and flexible approximations to the actual lag distribution than the conventional parametric MIDAS approach based on exponential lag polynomials. Parametric and nonparametric methods are applied to assess the predictive power of various daily indicators for forecasting monthly inflation rates. It turns out that the commodity price index is a useful predictor for inflations rates 20–30 days ahead with a hump‐shaped lag distribution. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Jean‐Thomas Bernard Lynda Khalaf Maral Kichian Sebastien Mcmahon 《Journal of forecasting》2008,27(4):279-291
In examining stochastic models for commodity prices, central questions often revolve around time‐varying trend, stochastic convenience yield and volatility, and mean reversion. This paper seeks to assess and compare alternative approaches to modelling these effects, with focus on forecast performance. Three specifications are considered: (i) random‐walk models with GARCH and normal or Student‐t innovations; (ii) Poisson‐based jump‐diffusion models with GARCH and normal or Student‐t innovations; and (iii) mean‐reverting models that allow for uncertainty in equilibrium price. Our empirical application makes use of aluminium spot and futures price series at daily and weekly frequencies. Results show: (i) models with stochastic convenience yield outperform all other competing models, and for all forecast horizons; (ii) the use of futures prices does not always yield lower forecast error values compared to the use of spot prices; and (iii) within the class of (G)ARCH random‐walk models, no model uniformly dominates the other. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
Treed Avalanche Forecasting: Mitigating Avalanche Danger Utilizing Bayesian Additive Regression Trees 下载免费PDF全文
Little Cottonwood Canyon Highway is a dead‐end, two‐lane road leading to Utah's Alta and Snowbird ski resorts. It is the only road access to these resorts and is heavily traveled during the ski season. Professional avalanche forecasters monitor this road throughout the ski season in order to make road closure decisions in the face of avalanche danger. Forecasters at the Utah Department of Transportation (UDOT) avalanche guard station at Alta have maintained an extensive daily winter database on explanatory variables relating to avalanche prediction. Whether or not an avalanche crosses the road is modeled in this paper via Bayesian additive tree methods. Utilizing daily winter data from 1995 to 2011, results show that using Bayesian tree analysis outperforms traditional statistical methods in terms of realized misclassification costs that take into consideration asymmetric losses arising from two types of error. Closing the road when an avalanche does not occur is an error harmful to resort owners, and not closing the road when one does may result in injury or death. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
In this paper, we forecast local currency debt of five major emerging market countries (Brazil, Indonesia, Mexico, South Africa, and Turkey) over the period January 2010 to January 2019 (with an in-sample period: March 2005 to December 2009). We exploit information from a large set of economic and financial time series to assess the importance not only of “own-country” factors (derived from principal component and partial least squares approaches), but also create “global” predictors by combining the country-specific variables across the five emerging economies. We find that, while information on own-country factors can outperform the historical average model, global factors tend to produce not only greater statistical and economic gains, but also enhance market timing ability of investors, especially when we use the target variable (bond premium) approach under the partial least squares method to extract our factors. Our results have important implications not only for fund managers but also for policymakers. 相似文献
10.
James Chong 《Journal of forecasting》2004,23(8):603-620
This paper compares daily exchange rate value at risk estimates derived from econometric models with those implied by the prices of traded options. Univariate and multivariate GARCH models are employed in parallel with the simple historical and exponentially weighted moving average methods. Overall, we find that during periods of stability, the implied model tends to overestimate value at risk, hence over‐allocating capital. However, during turbulent periods, it is less responsive than the GARCH‐type models, resulting in an under‐allocation of capital and a greater number of failures. Hence our main conclusion, which has important implications for risk management, is that market expectations of future volatility and correlation, as determined from the prices of traded options, may not be optimal tools for determining value at risk. Therefore, alternative models for estimating volatility should be sought. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
11.
Yujing Gong Kung‐Cheng Ho Chia‐Chun Lo Andreas Karathanasopoulos I‐Ming Jiang 《Journal of forecasting》2019,38(4):354-373
This paper investigates the role of corporate social responsibility (CSR) performance in forecasting companys' stock prices and future returns. The forecasting analysis identifies a negative association between CSR performance and proxies of price delay. The negative CSR–delay association is weak for state‐owned enterprises (SOEs) because of their politically oriented motivation of CSR activities, but significantly strong for non‐SOEs. Furthermore, we find that forecasting delayed firms is expected to have higher future returns. In particular, the returns premium is most attributable to the CSR component of delay, compared with the non‐CSR component. Taken together, these results suggest that CSR performance plays a positive role in enhancing stock price efficiency, and a potential explanation is that CSR performance can be considered as additional information for equity predictions. 相似文献
12.
Christian Schumacher 《Journal of forecasting》2007,26(4):271-302
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the German economy. One model extracts factors by static principal components analysis; the second model is based on dynamic principal components obtained using frequency domain methods; the third model is based on subspace algorithms for state‐space models. Out‐of‐sample forecasts show that the forecast errors of the factor models are on average smaller than the errors of a simple autoregressive benchmark model. Among the factor models, the dynamic principal component model and the subspace factor model outperform the static factor model in most cases in terms of mean‐squared forecast error. However, the forecast performance depends crucially on the choice of appropriate information criteria for the auxiliary parameters of the models. In the case of misspecification, rankings of forecast performance can change severely. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
Estimation of the value at risk (VaR) requires prediction of the future volatility. Whereas this is a simple task in ARCH and related models, it becomes much more complicated in stochastic volatility (SV) processes where the volatility is a function of a latent variable that is not observable. In-sample (present and past values) and out-of-sample (future values) predictions of that unobservable variable are thus necessary. This paper proposes singular spectrum analysis (SSA), which is a fully nonparametric technique that can be used for both purposes. A combination of traditional forecasting techniques and SSA is also considered to estimate the VaR. Their performance is assessed in an extensive Monte Carlo and with an application to a daily series of S&P500 returns. 相似文献
14.
Interest in online auctions has been growing in recent years. There is an extensive literature on this topic, whereas modeling online auction price process constitutes one of the most active research areas. Most of the research, however, only focuses on modeling price curves, ignoring the bidding process. In this paper, a semiparametric regression model is proposed to model the online auction process. This model captures two main features of online auction data: changing arrival rates of bidding processes and changing dynamics of prices. A new inference procedure using B‐splines is also established for parameter estimation. The proposed model is used to forecast the price of an online auction. The advantage of this proposed approach is that the price can be forecast dynamically and the prediction can be updated according to newly arriving information. The model is applied to Xbox data with satisfactory forecasting properties. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Lon-Mu Liu 《Journal of forecasting》1991,10(5):521-547
This paper studies the dynamic relationships between US gasoline prices, crude oil prices, and the stock of gasoline. Using monthly data between January 1973 and December 1987, we find that the US gasoline price is mainly influenced by the price of crude oil. The stock of gasoline has little or no influence on the price of gasoline during the period before the second energy crisis, and seems to have some influence during the period after. We also find that the dynamic relationship between the prices of gasoline and crude oil changes over time, shifting from a longer lag response to a shorter lag response. Box-Jenkins ARIMA and transfer function models are employed in this study. These models are estimated using estimation procedure with and without outlier adjustment. For model estimation with outlier adjustment, an iterative procedure for the joint estimation of model parameters and outlier effects is employed. The forecasting performance of these models is carefully examined. For the purpose of illustration, we also analyze these time series using classical white-noise regression models. The results show the importance of using appropriate time-series methods in modeling and forecasting when the data are serially correlated. This paper also demonstrates the problems of time-series modeling when outliers are present. 相似文献
16.
Suleyman Gokcan 《Journal of forecasting》2000,19(6):499-504
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
17.
The Informational Content of the Term Spread in Forecasting the US Inflation Rate: A Nonlinear Approach 下载免费PDF全文
Vasilios Plakandaras Periklis Gogas Theophilos Papadimitriou Rangan Gupta 《Journal of forecasting》2017,36(2):109-121
The difficulty in modelling inflation and the significance in discovering the underlying data‐generating process of inflation is expressed in an extensive literature regarding inflation forecasting. In this paper we evaluate nonlinear machine learning and econometric methodologies in forecasting US inflation based on autoregressive and structural models of the term structure. We employ two nonlinear methodologies: the econometric least absolute shrinkage and selection operator (LASSO) and the machine‐learning support vector regression (SVR) method. The SVR has never been used before in inflation forecasting considering the term spread as a regressor. In doing so, we use a long monthly dataset spanning the period 1871:1–2015:3 that covers the entire history of inflation in the US economy. For comparison purposes we also use ordinary least squares regression models as a benchmark. In order to evaluate the contribution of the term spread in inflation forecasting in different time periods, we measure the out‐of‐sample forecasting performance of all models using rolling window regressions. Considering various forecasting horizons, the empirical evidence suggests that the structural models do not outperform the autoregressive ones, regardless of the model's method. Thus we conclude that the term spread models are not more accurate than autoregressive models in inflation forecasting. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper. 相似文献
19.
Icaro Romolo Sousa Agostino Wesley Vieira da Silva Claudimar Pereira da Veiga Adriano Mendonça Souza 《Journal of forecasting》2020,39(7):1043-1056
The purpose of this paper is to present the result of a systematic literature review regarding the application and development of forecasting models in the industrial context, especially the context of manufacturing processes and operations management. The study was conducted considering the preparation of an established research protocol to know, discuss, and analyze the main approaches adopted by researchers in the field. To achieve this objective, we analyzed 354 recent papers published in periodicals between 2008 and 2018. This paper makes three main contributions to the field: (i) it presents an updated portfolio of prediction models in the industrial context, providing a reference point for researchers and industrial managers; (ii) it presents a characterization of the field of study through the identification of publication vehicles, frequency, and the principal authors and countries related to the development of research on the theme; (iii) it proposes a unified framework, listing the characteristics of the prediction models with their respective application contexts, identifying the current research directions to provide theoretical aids for the development of new approaches to forecasting in industry. The results of this study provide an empirical base for further discussions on studies that focus on forecasting in the industrial context. 相似文献
20.
Micro panels characterized by large numbers of individuals observed over a short time period provide a rich source of information, but as yet there is only limited experience in using such data for forecasting. Existing simulation evidence supports the use of a fixed‐effects approach when forecasting but it is not based on a truly micro panel set‐up. In this study, we exploit the linkage of a representative survey of more than 250,000 Australians aged 45 and over to 4 years of hospital, medical and pharmaceutical records. The availability of panel health cost data allows the use of predictors based on fixed‐effects estimates designed to guard against possible omitted variable biases associated with unobservable individual specific effects. We demonstrate the preference towards fixed‐effects‐based predictors is unlikely to hold in many practical situations, including our models of health care costs. Simulation evidence with a micro panel set‐up adds support and additional insights to the results obtained in the application. These results are supportive of the use of the ordinary least squares predictor in a wide range of circumstances. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献