首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper considers how information from the implied volatility (IV) term structure can be harnessed to improve stock return volatility forecasting within the state-of-the-art HAR model. Factors are extracted from the IV term structure and included as exogenous variables in the HAR framework. We found that including slope and curvature factors leads to significant forecast improvements over the HAR benchmark at a range of forecast horizons, compared with the standard HAR model and HAR model with VIX as IV information set.  相似文献   

2.
    
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
    
Inspired by the commonly held view that international stock market volatility is equivalent to cross-market information flow, we propose various ways of constructing two types of information flow, based on realized volatility (RV) and implied volatility (IV), in multiple international markets. We focus on the RVs derived from the intraday prices of eight international stock markets and use a heterogeneous autoregressive framework to forecast the future volatility of each market for 1 day to 22 days ahead. Our Diebold-Mariano tests provide strong evidence that information flow with IV enhances the accuracy of forecasting international RVs over all of the prediction horizons. The results of a model confidence set test show that a market's own IV and the first principal component of the international IVs exhibit the strongest predictive ability. In addition, the use of information flows with IV can further increase economic returns. Our results are supported by the findings of a wide range of robustness checks.  相似文献   

4.
    
In recent years, considerable attention has focused on modelling and forecasting stock market volatility. Stock market volatility matters because stock markets are an integral part of the financial architecture in market economies and play a key role in channelling funds from savers to investors. The focus of this paper is on forecasting stock market volatility in Central and East European (CEE) countries. The obvious question to pose, therefore, is how volatility can be forecast and whether one technique consistently outperforms other techniques. Over the years a variety of techniques have been developed, ranging from the relatively simple to the more complex conditional heteroscedastic models of the GARCH family. In this paper we test the predictive power of 12 models to forecast volatility in the CEE countries. Our results confirm that models which allow for asymmetric volatility consistently outperform all other models considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
    
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

7.
    
We analyze the predictive value of (the surprise component of) state-level business applications, as a proxy of local investor sentiment, for the state-level realized US stock-market volatility. We use high-frequency data for the period from September 2011 to October 2021 to compute realized volatility. Using an extended version of the popular heterogeneous autoregressive realized volatility model and accounting for the possibility that users of forecasts have an asymmetric loss function, we show that business applications tend to have predictive value for realized state-level stock-market volatility, as well as for upside (“good”) and downside (“bad”) realized volatility, for users of forecasts who suffer a larger loss from an underprediction of realized volatility than from an overprediction of the same (absolute) seize, after controlling for realized moments (realized skewness, realized kurtosis, realized jumps, and realized tail risks). We also highlight that the COVID-19 period is a major driver of our empirical results.  相似文献   

8.
    
Multifractal models have recently been introduced as a new type of data‐generating process for asset returns and other financial data. Here we propose an adaptation of this model for realized volatility. We estimate this new model via generalized method of moments and perform forecasting by means of best linear forecasts derived via the Levinson–Durbin algorithm. Its out‐of‐sample performance is compared against other popular time series specifications. Using an intra‐day dataset for five major international stock market indices, we find that the the multifractal model for realized volatility improves upon forecasts of its earlier counterparts based on daily returns and of many other volatility models. While the more traditional RV‐ARFIMA model comes out as the most successful model (in terms of the number of cases in which it has the best forecasts for all combinations of forecast horizons and evaluation criteria), the new model performs often significantly better during the turbulent times of the recent financial crisis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
    
Empirical high‐frequency data can be used to separate the continuous and the jump components of realized volatility. This may improve on the accuracy of out‐of‐sample realized volatility forecasts. A further improvement may be realized by disentangling the two components using a sampling frequency at which the market microstructure effect is negligible, and this is the objective of the paper. In particular, a significant improvement in the accuracy of volatility forecasts is obtained by deriving the jump information from time intervals at which the noise effect is weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
    
We show that contrasting results on trading volume's predictive role for short‐horizon reversals in stock returns can be reconciled by conditioning on different investor types' trading. Using unique trading data by investor type from Korea, we provide explicit evidence of three distinct mechanisms leading to contrasting outcomes: (i) informed buying—price increases accompanied by high institutional buying volume are less likely to reverse; (ii) liquidity selling—price declines accompanied by high institutional selling volume in institutional investor habitat are more likely to reverse; (iii) attention‐driven speculative buying—price increases accompanied by high individual buying‐volume in individual investor habitat are more likely to reverse. Our approach to predict which mechanism will prevail improves reversal forecasts following return shocks: An augmented contrarian strategy utilizing our ex ante formulation increases short‐horizon reversal strategy profitability by 40–70% in the US and Korean stock markets.  相似文献   

12.
This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
    
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
    
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV.  相似文献   

15.
    
For leverage heterogeneous autoregressive (LHAR) models with jumps and other covariates, called LHARX models, multistep forecasts are derived. Some optimal properties of forecasts in terms of conditional volatilities are discussed, which tells us to model conditional volatility for return but not for the LHARX regression error and other covariates. Forecast standard errors are constructed for which we need to model conditional volatilities both for return and for LHAR regression error and other blue covariates. The proposed methods are well illustrated by forecast analysis for the realized volatilities of the US stock price indexes: the S&P 500, the NASDAQ, the DJIA, and the RUSSELL indexes.  相似文献   

16.
    
We investigate whether crude oil price volatility is predictable by conditioning on macroeconomic variables. We consider a large number of predictors, take into account the possibility that relative predictive performance varies over the out-of-sample period, and shed light on the economic drivers of crude oil price volatility. Results using monthly data from 1983:M1 to 2018:M12 document that variables related to crude oil production, economic uncertainty and variables that either describe the current stance or provide information about the future state of the economy forecast crude oil price volatility at the population level 1 month ahead. On the other hand, evidence of finite-sample predictability is very weak. A detailed examination of our out-of-sample results using the fluctuation test suggests that this is because relative predictive performance changes drastically over the out-of-sample period. The predictive power associated with the more successful macroeconomic variables concentrates around the Great Recession until 2015. They also generate the strongest signal of a decrease in the price of crude oil towards the end of 2008.  相似文献   

17.
    
We perform Bayesian model averaging across different regressions selected from a set of predictors that includes lags of realized volatility, financial and macroeconomic variables. In our model average, we entertain different channels of instability by either incorporating breaks in the regression coefficients of each individual model within our model average, breaks in the conditional error variance, or both. Changes in these parameters are driven by mixture distributions for state innovations (MIA) of linear Gaussian state‐space models. This framework allows us to compare models that assume small and frequent as well as models that assume large but rare changes in the conditional mean and variance parameters. Results using S&P 500 monthly and quarterly realized volatility data from 1960 to 2014 suggest that Bayesian model averaging in combination with breaks in the regression coefficients and the error variance through MIA dynamics generates statistically significantly more accurate forecasts than the benchmark autoregressive model. However, compared to a MIA autoregression with breaks in the regression coefficients and the error variance, we fail to provide any drastic improvements.  相似文献   

18.
    
In this paper, we investigate the time series properties of S&P 100 volatility and the forecasting performance of different volatility models. We consider several nonparametric and parametric volatility measures, such as implied, realized and model‐based volatility, and show that these volatility processes exhibit an extremely slow mean‐reverting behavior and possible long memory. For this reason, we explicitly model the near‐unit root behavior of volatility and construct median unbiased forecasts by approximating the finite‐sample forecast distribution using bootstrap methods. Furthermore, we produce prediction intervals for the next‐period implied volatility that provide important information about the uncertainty surrounding the point forecasts. Finally, we apply intercept corrections to forecasts from misspecified models which dramatically improve the accuracy of the volatility forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
    
This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction‐of‐change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub‐period 8 April 1998 to 5 February 2002 has been reserved for out‐of‐sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability, after the inclusion of transaction costs, during bear market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy‐and‐hold strategy. We suggest that our findings can be justified by invoking either the ‘volatility feedback’ theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
    
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号