首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文推导了随机二相码脉间调制脉冲串雷达信号的平均模糊函数,并给出了计算机仿真结果及其分析。结果表明:该信号的模糊图为“梳齿形”,通过适当选择波形参数,可使该信号在距离和速度上同时具有良好的分辨能力和测量精度。同时该信号的随机性使它具有良好的抗干扰性能。另外,该信号的产生和处理相对于其它随机雷达信号简单,具有良好的工程可实现性。  相似文献   

2.
脉间捷变波形的匹配滤波响应存在差异,对地/海杂波等效为距离旁瓣调制(range sidelobe modulation,RSM),导致杂波抑制能力下降,甚至无法进行相参处理.针对线性调频(linear frequency modulation,LFM)信号在带宽恒定前提下,改变脉宽和调频极性后具有主瓣宽度相同、旁瓣幅度...  相似文献   

3.
复杂电磁场景中多种转发干扰并存, 严重影响了雷达的探测效果, 而传统的波形设计方法多针对一种特定的干扰样式进行分析, 面对多种干扰时对抗效果有限。针对此问题, 对脉内线性调频相位编码脉间频率捷变波形进行了综合优化设计。首先, 在分析脉内脉间多种转发式干扰样式的基础上, 兼顾转发干扰与波形本身特性进行代价函数设计。之后, 利用遗传模拟退火算法优化波形参数, 具有良好的抗干扰效果。最终, 数值仿真实验验证了所设计波形的有效性。  相似文献   

4.
同频干扰具有压制干扰和欺骗干扰的特点,是一种较难对抗的雷达干扰方式,而灵活的波形设计是抗同频干扰的一种新途径。本文对同频干扰的机理和信号特性进行了分析和总结,而后研究了两级相位编码信号变波形脉压失配后输出信号的特点。在此基础上提出了利用相位编码变波形联合恒虚警(constant false-alarm rate, CFAR)技术抗同频干扰的方法,通过合理设置相位编码波形和匹配压缩滤波器,使同频干扰信号处于脉压失配状态,再通过CFAR处理滤除干扰信号。仿真结果表明,合理设置相位编码波形并配合CFAR检测处理,能够有效地从同频干扰中提取出有用的目标回波信号,并且对强同频干扰具有较好的适应性。  相似文献   

5.
针对直接序列扩频(direct sequence spread spectrum, DSSS)信号盲解扩问题,现有的方法大多基于矩阵分解理论,抽取主特征向量进行解调进而恢复伪码波形。非合作接收条件下,由于伪码波形未知且信噪比极低,载波频率、相位信息往往难以精确估计。考虑非合作接收条件,伪码未同步且含有随机载波频偏,现有方法常对两倍长度的复基带分段相关矩阵进行分解,带来了极大的计算资源消耗,并且存在性能退化等问题。本文提出了一种面向中频的短码DSSS信号数字盲解扩算法,分析了载波残余对伪码波形同步的影响,并通过中频实矩阵分解重构了伪码波形,最后针对含任意载波残余的DSSS二进制相移键控(DSSS-binary phase shifted keying, DSSS-BPSK)信号,设计了完整的从波形到比特的低复杂度盲解调解扩流程。仿真结果表明,所提算法拥有更好的误码率性能以及良好的载波参数鲁棒性。  相似文献   

6.
针对直接序列扩频(direct sequence spread spectrum, DSSS)信号盲解扩问题,现有的方法大多基于矩阵分解理论,抽取主特征向量进行解调进而恢复伪码波形。非合作接收条件下,由于伪码波形未知且信噪比极低,载波频率、相位信息往往难以精确估计。考虑非合作接收条件,伪码未同步且含有随机载波频偏,现有方法常对两倍长度的复基带分段相关矩阵进行分解,带来了极大的计算资源消耗,并且存在性能退化等问题。本文提出了一种面向中频的短码DSSS信号数字盲解扩算法,分析了载波残余对伪码波形同步的影响,并通过中频实矩阵分解重构了伪码波形,最后针对含任意载波残余的DSSS二进制相移键控(DSSS-binary phase shifted keying, DSSS-BPSK)信号,设计了完整的从波形到比特的低复杂度盲解调解扩流程。仿真结果表明,所提算法拥有更好的误码率性能以及良好的载波参数鲁棒性。  相似文献   

7.
雷达通信一体化能有效提高频谱利用率, 减小电子设备体积, 是多功能综合一体化电子系统的主要研究方向之一。本文在随机脉冲重复间隔(pulse repetition interval, PRI)雷达的基础上, 提出一种新的基于PRI捷变的雷达通信一体化共享信号设计方法。通过改变发射信号的PRI, 将通信信息嵌入到发射信号中, 在雷达信号处理端, 引入压缩感知理论来完成方位向相参积累, 并实现对目标速度的超分辨估计; 在通信信号处理端, 通过检测脉冲的PRI来完成信息的解调。仿真试验表明, 所提方法在保证雷达探测性能的前提下, 可实现通信信息的稳定传输。  相似文献   

8.
针对现代战场中目标往往采用机动方式运动的情况,为了提高目标跟踪的准确性和精确性,结合多传感器数据融合的优点,提出了一种基于波形捷变的多传感器机动目标跟踪方法。该算法通过波形捷变来改变量测的精度。首先在现有文献的基础上,将波形捷变方式推广到二维空间,把雷达量测的克拉美罗下限(Cramer-Rao lower bound,CRLB)近似为量测误差协方差,由于该CRLB是关于发射波形参量的,从而把雷达跟踪的信号处理与数据处理结合在一起,通过波形参量的动态选择得到量测误差协方差的最小值。从而在整个雷达跟踪过程中提高信噪比(signal to noise ratio,SNR),降低量测误差。其次,在数据处理上,采用多传感器数据融合及粒子滤波进一步提高机动目标跟踪的精度。最后,将该算法与传统的Kalman滤波、粒子滤波及只对一维空间的量测采用波形捷变的算法和交互多模型方法(interacting multiple model,IMM)进行仿真比较,仿真结果显示该算法对机动目标的跟踪精度显著提高。  相似文献   

9.
为了提升通信信号的低检测概率(low probability of detection, LPD)性能,从降低通信波形各域能量聚敛性的角度,提出时宽-波形基联合捷变(joint agility of time width and waveform bases, JATW)的波形构架。基于此构架,以切普扩频(chirp spread spectrum, CSS)和正弦扩频(sinusoidal frequency spread spectrum, SFSS)为波形基,采用变时宽(varied of time width, VTW)参数配置方法,提出基于VTW-CSS/SFSS混合波形的LPD通信波形。采用数学推导辅以数值仿真分析的方法,分析所提出波形的各域能量聚敛特征。理论分析和数值仿真结果表明,相较于CSS和SFSS,所提波形的各域能量聚敛性明显较弱, JATW的波形构架有助于提升通信波形的LPD性能。  相似文献   

10.
为了提升通信信号的低检测概率(low probability of detection, LPD)性能,从降低通信波形各域能量聚敛性的角度,提出时宽-波形基联合捷变(joint agility of time width and waveform bases, JATW)的波形构架。基于此构架,以切普扩频(chirp spread spectrum, CSS)和正弦扩频(sinusoidal frequency spread spectrum, SFSS)为波形基,采用变时宽(varied of time width, VTW)参数配置方法,提出基于VTW-CSS/SFSS混合波形的LPD通信波形。采用数学推导辅以数值仿真分析的方法,分析所提出波形的各域能量聚敛特征。理论分析和数值仿真结果表明,相较于CSS和SFSS,所提波形的各域能量聚敛性明显较弱, JATW的波形构架有助于提升通信波形的LPD性能。  相似文献   

11.
针对波形捷变雷达相参积累问题,提出基于非标准Keystone变换(Keystone transform, KT)的波形捷变雷达相参积累算法,基本思路是利用KT消除目标距离走动,然后再利用快速傅里叶变换进行多脉冲相参积累。考虑到标准KT需要进行搜索模糊数,基于尺度估计概念,提出了无需模糊数搜索的非标准KT,其中的尺度估计环节利用梅林变换实现。同时,针对捷变波形与相参体制兼容性问题,通过对基准波形进行时间尺度操作,设计了一种线性调频捷变波形。仿真结果表明,当信噪比大于-2 dB,所提非标准KT能够解决波形捷变雷达目标距离走动校正难题;所设计捷变波形不仅与相参体制雷达具有较好的兼容性,还可以实现目标距离主瓣不展宽旁瓣抑制。  相似文献   

12.
本文推导了频率随机捷变雷达信号的平均模糊函数,首次给出了该随机序列的模糊函数数学表达式,对其推导过程所采用的主要方法做了叙述,并对结果进行了分析。仿真结果表明,当参数选择合适时,该噪声雷达信号不但具有良好的抗干扰特性,而且可以避免距离模糊。  相似文献   

13.
对波形捷变SAR的间歇采样快/慢时间调制干扰   总被引:1,自引:0,他引:1  
提出一种针对波形捷变合成孔径雷达(synthetic aperture radar, SAR)的新型干扰方法。借鉴间歇采样原理,结合快时间、慢时间调制,形成新型欺骗干扰。利用间歇采样实现在波形捷变SAR当前脉冲内及时转发,利用快时间调制实现距离向迁移,利用慢时间调制实现方位向上的多假目标。该新型干扰为实现对波形捷变SAR有效干扰提供了一种全新的途径。仿真实验验证了该干扰方法的可行性和有效性。  相似文献   

14.
针对低信噪比(signal-to-noise ratio, SNR)条件下, Walsh码软扩频信号盲解扩以及多址信号盲分离难以实现的问题,提出一种Walsh码软扩频信号降噪算法。首先,采用经验模态分解(empirical mode decomposition, EMD)算法将Walsh码软扩频信号分解为有限个本征模态函数(intrinsic mode function, IMF),分界点位置可通过Walsh码软扩频信号和噪声的IMF自相关函数收敛速度的差异进行判断。然后,采用小波软阈值滤波算法处理分界点之前的IMF。最后,利用处理后的低阶IMF和分界点后的IMF重构Walsh码软扩频信号,减少由于降噪造成的信号损失。仿真结果表明,在一定低SNR范围内,降噪算法以较低误码率(bit error rate, BER)实现解调,信号损失较少。  相似文献   

15.
频率编码脉冲信号的模糊函数与编码优化   总被引:13,自引:0,他引:13  
推导了频率编码脉冲信号的模糊函数数学表达式,讨论了该信号的距离、速度分辨性能,提出了优化频率编码准则,并以码长N= 16为例给出了优化频率编码方案,最后讨论了优化频率编码脉冲信号距离速度联合分辨性能。  相似文献   

16.
本文将蒙特卡罗方法引入到二相编码信号的波形设计之中,根据相关特性选择二相编码信号。结果表明,这种方法大大降低了计算量,可以用来搜寻码长度较短的最优二相码,也可以寻找码长较长的优化码,是二相编码信号波形设计的一种新方法。  相似文献   

17.
针对传统多相码信号识别方法在低信噪比情况下分类精度不高、类识别率不均衡和识别方法不具有通用性的特点,提出了一种利用集成学习中的多类指数损失函数逐步添加模型(stagewise additive modeling using a multi-class exponential loss function, SAMME)算法和残差神经网络(residual neural network, ResNet)的多相码信号识别方法。通过仿真实验对5类多相码信号进行了分类识别,验证了模型的有效性,分析了不同数量基学习器对模型的影响,最后与传统分类方法进行了对比。仿真结果表明,在信噪比低于6 dB的情况下,所提方法相对于单个残差网络提高了约10%的分类精度,同时缩小了类之间识别率的差距,相对于常用的分类方法也有很大的优势。  相似文献   

18.
针对传统多相码信号识别方法在低信噪比情况下分类精度不高、类识别率不均衡和识别方法不具有通用性的特点,提出了一种利用集成学习中的多类指数损失函数逐步添加模型(stagewise additive modeling using a multi-class exponential loss function, SAMME)算法和残差神经网络(residual neural network, ResNet)的多相码信号识别方法。通过仿真实验对5类多相码信号进行了分类识别,验证了模型的有效性,分析了不同数量基学习器对模型的影响,最后与传统分类方法进行了对比。仿真结果表明,在信噪比低于6 dB的情况下,所提方法相对于单个残差网络提高了约10%的分类精度,同时缩小了类之间识别率的差距,相对于常用的分类方法也有很大的优势。  相似文献   

19.
低信噪比长伪码直扩信号伪码周期的估计方法   总被引:3,自引:1,他引:3  
针对低信噪比长伪码调制直扩(DS-SS)信号的伪码(PN码)周期参数估计的难题,提出了一类基于信号功率谱二次处理的新方法。该方法首先对信号的功率谱进行估计,接着将估计出的功率谱作为输入信号再来求取功率谱,最后得到的二次谱就会在长伪码调制DS-SS信号PN码周期的整数倍处得到一列尖锐的二次谱线,通过估计这些谱线的间距就可以获得其PN码的周期估计。为了在低信噪比情况下增强二次谱线和估计效果,采用了由多个接收信号矢量计算得到的二次谱结果进行平均累积的办法。理论分析和计算机模拟表明,该类方法在较低的输入信噪比条件下能良好地工作。  相似文献   

20.
针对载频-重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification, MUSIC)算法的载频-重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频-重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号