首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53–56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.Received 23 October 2003; received after revision 5 December 2003; accepted 12 December 2003  相似文献   

2.
Extracts of Cimicifuga racemosa are used frequently for menopausal complaints. Cimicifuga is well tolerated but can occasionally cause liver injury. To assess hepatotoxicity of cimicifuga in more detail, ethanolic C. racemosa extract was administered orally to rats, and liver sections were analyzed by electron microscopy. Tests for cytotoxicity, mitochondrial toxicity and apoptosis/necrosis were performed using HepG2 cells. Mitochondrial toxicity was studied using isolated rat liver mitochondria. Microvesicular steatosis was found in rats treated with > 1,000 mg/kg [DOSAGE ERROR CORRECTED] body weight cimicifuga extract. In vitro, cytotoxicity was apparent at concentrations > or =75 microg/mL, and mitochondrial beta-oxidation was impaired at concentrations > or =10 microg/mL. The mitochondrial membrane potential was decreased at concentrations > or =100 microg/mL, and oxidative phosphorylation was impaired at concenq trations > or =300 microg/mL. The mechanism of cell death was predominantly apoptosis. C. racemosa exerts toxicity in vivo and in vitro, eventually resulting in apoptotic cell death. The results are compatible with idiosyncratic hepatotoxicity as observed in patients treated with cimicifuga extracts.  相似文献   

3.
A new lysozyme (cv-lysozyme 2) with a MALDI molecular mass of 12 984.6 Da was purified from crystalline styles and digestive glands of eastern oysters (Crassostrea virginica) and its cDNA sequenced. Quantitative real time RT-PCR detected cv-lysozyme 2 gene expression primarily in digestive gland tissues, and in situ hybridization located cv-lysozyme 2 gene expression in basophil cells of digestive tubules. Cv-lysozyme 2 showed high amino acid sequence similarity to other bivalve mollusk lysozymes, including cv-lysozyme 1, a lysozyme recently purified from C. virginica plasma. Differences between cv-lysozyme 2 and cv-lysozyme 1 molecular characteristics, enzymatic properties, antibacterial activities, distribution in the oyster body and site of gene expression indicate that the main role of cv-lysozyme 2 is in digestion. While showing that a bivalve mollusk employs different lysozymes for different functions, findings in this study suggest adaptive evolution of i type lysozymes for nutrition. Received 30 August 2006; received after revision 14 October 2006; accepted 6 November 2006  相似文献   

4.
The facultative intracellular pathogen Salmonella enterica resides in a special membrane compartment of the host cell and modifies its host to achieve intracellular survival and proliferation. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) has a central role in the interference of intracellular Salmonella with host cell functions. SPI2 function affects antimicrobial defense mechanisms of the host, intracellular transport processes, integrity and function of the cytoskeleton and host cell death. These modifications are mediated by translocation of a large number of effector proteins by the SPI2 system. In this review, we summarize recent work on the cellular phenotypes related to SPI2 function and contribution of SPI2 effector proteins to these manipulations. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells.Received 11 June 2004; received after revision 8 July 2004; accepted 12 July 2004  相似文献   

5.
Mating affects the reproductive behaviour of insect females: the egg-laying rate increases and courting males are rejected. These post-mating responses are induced mainly by seminal fluid. In Drosophila melanogaster, males transfer two peptides (sex-peptides, = Sps) that reduce receptivity and elicit increased egg laying in their mating partners. Similarities in the open reading frames of the genes suggest that they have arisen by gene duplication. In females, Sps bind to specific sites in the central and peripheral nervous system, and to the genital tract. The binding proteins of the nervous system and genital tract are membrane proteins, but they differ molecularly. The former protein is proposed to be a receptor located at the top of a signalling cascade leading to the two post-mating responses, whereas the latter is a carrier protein moving Sps from the genital tract into the haemolymph. Sps bind to sperm. Together with sperm they are responsible for the persistence of the two post-mating responses. But Sps are the molecular basis of the sperm effect; sperm is merely the carrier.Received 10 February 2003; received after revision 25 April 2003; accepted 1 May 2003This article is dedicated to the 85th birthday of the discover of the sex-peptide, Prof. Dr. Pei Shen Chen, Zoological Institute, University of Zürich, Switzerland. P. S. Chen has served on the Editorial Board of Experientia (now CMLS) from 1974 to 1988.  相似文献   

6.
The product of the Escherichia coli ORFan gene ykfE was recently shown to be a strong inhibitor of C-type lysozyme in vitro. The gene was correspondingly renamed ivy (inhibitor of vertebrate lysozyme), but its biological function in E. coli remains unknown. In this work, we investigated the role of Ivy in the resistance of E. coli to the bactericidal effect of lysozyme in the presence of outer-membrane-permeabilizing treatments. Both in the presence of lactoferrin (3.0 mg/ml) and under high hydrostatic pressure (250 MPa), the lysozyme resistance of E. coli MG1655 was decreased by knock-out of Ivy, and increased by overexpression of Ivy. However, knock-out of Ivy did not increase the lysozyme sensitivity of an E. coli MG1655 mutant previously described to be resistant to lysozyme under high pressure. These results indicate that Ivy is one of several factors that affect lysozyme resistance in E. coli, and suggest a possible function for Ivy as a host interaction factor in commensal and pathogenic E. coli.Received 12 February 2004; received after revision 11 March 2004; accepted 16 March 2004  相似文献   

7.
The recent identification of candidate receptor genes for sweet, umami and bitter taste in mammals has opened a door to elucidate the molecular and neuronal mechanisms of taste. Drosophila provides a suitable system to study the molecular, physiological and behavioral aspects of taste, as sophisticated molecular genetic techniques can be applied. A gene family for putative gustatory receptors has been found in the Drosophila genome. We discuss here current knowledge of the gustatory physiology of Drosophila. Taste cells in insects are primary sensory neurons whereupon each receptor neuron responds to either sugar, salt or water. We found that particular tarsal gustatory sensilla respond to bitter compounds. Electrophysiological studies indicate that gustatory sensilla on the labellum and tarsi are heterogeneous in terms of their taste sensitivity. Determination of the molecular bases for this heterogeneity could lead to an understanding of how the sensory information is processed in the brain and how this in turn is linked to behavior.Received 12 May 2003; received after revision 9 June 2003; accepted 13 June 2003  相似文献   

8.
Lysozyme is an important component of the innate immune system, protecting the gastrointestinal tract from infection. The aim of the present study was to determine if lysozyme is expressed in the chicken (Gallus gallus) intestine and to characterise the molecular forms expressed. Immunohistochemical staining localised lysozyme to epithelial cells of the villous epithelium along the length of the small intestine. There was no evidence for lysozyme expression in crypt epithelium and no evidence for Paneth cells. Immunoblots of chicken intestinal protein revealed three proteins: a 14-kDa band consistent with lysozyme c, and two additional bands of approximately 21 and 23 kDa, the latter consistent with lysozyme g. RT-PCR analyses confirmed that lysozyme c mRNA is expressed in 4-day, but not older chicken intestine and lysozyme g in 4- to 35-day chicken intestine. A novel chicken lysozyme g2 gene was identified by in silico analyses and mRNA for this lysozyme g2 was identified in the intestine from chickens of all ages. Chicken lysozyme g2 shows similarity with fish lysozyme g, including the absence of a signal peptide and cysteines involved in disulphide bond formation of the mammalian and bird lysozyme g proteins. Analyses using SecretomeP predict that chicken lysozyme g2 may be secreted by the non-classical secretory pathway. We conclude that lysozyme is expressed in the chicken small intestine by villous enterocytes. Lysozyme c, lysozyme g and g2 may fulfil complimentary roles in protecting the intestine.Received 4 August 2004; received after revision 1 September 2004; accepted 7 September 2004  相似文献   

9.
Members of the odorant-binding protein (OBP) and chemosensory protein (CSP) families were identified and characterised in the sensory tissues of the social wasp Polistes dominulus (Hymenoptera: Vespidae). Unlike most insects so far investigated, OBPs were detected in antennae, legs and wings, while CSPs appeared to be preferentially expressed in the antennae. The OBP is very different from the homologous proteins of other Hymenopteran species, with around 20% of identical residues, while the CSP appears to be much better conserved. Both OBP and CSP, not showing other post-translational modifications apart from disulphide bridges, were expressed with high yields in a bacterial system. Cysteine pairing in the recombinant and native proteins follows the classical arrangements described for other members of these classes of proteins. OBPs isolated from the wings were found to be associated with a number of long-chain aliphatic amides and other small organic molecules. Binding of these ligands and other related compounds was measured for both recombinant OBP and CSP.Received 14 May 2003; received after revision 8 June 2003; accepted 12 June 2003  相似文献   

10.
Bacterial motility is essential for chemotaxis, virulence and complex social interactions leading to biofilm and fruiting body formation. Although bacterial swimming in liquids with a flagellum is well understood, little is known regarding bacterial movements across solid surfaces. Gliding motility, one such mode of locomotion, has remained largely mysterious because cells move smoothly along their long axis in the absence of any visible organelle. In this review, I discuss recent evidence that focal adhesion systems mediate gliding motility in the social bacterium Myxococcus xanthus and combine this evidence with previous work to suggest a new working hypothesis inspired from knowledge in apicomplexan parasites. I then propose experimental directions to test the model and compare it to other pre-existing models. Finally, evidence on gliding mechanisms of selected organisms are presented to ask whether some features of the model have precedents in other bacteria and whether this complex biological process could be explained by a single mechanism or involves multiple distinct mechanisms. Received 12 April 2007; received after revision 8 June 2007; accepted 27 June 2007  相似文献   

11.
The lysozyme of the marine bilave Tapes japonica (13.8 kDa) is a novel protein. The protein has 46% homology with the destabilase from medicinal leech that has isopeptidase activity. Based on these data, we confirmed hydrolysis activity of T. japonica lysozyme against three substrates: L--Glu-pNA, D--Glu-pNA, and -(-Glu)-L-Lys. The optimal pH of chitinase and isopeptidase activity was 5.0 and 7.0, respectively. The isopeptidase activity was inhibited with serine protease inhibitor, but the lytic and chitinase activities were not. Moreover, only isopeptidase activity is decreased by lyophilization, but lytic and chitinase activities were not. We conclude that T. japonica lysozyme expresses isopeptidase and chitinase activity at different active sites.Received 25 February 2003; received after revision 29 May 2003; accepted 12 June 2003  相似文献   

12.
The phytotoxic protein PcF (Phytophthora cactorum-Fragaria) is a 5.6-kDa cysteine-rich, hydroxyproline- containing protein that is secreted in limited amounts by P. cactorum, an oomycete pathogen of tomato, strawberry and other relevant crop plants. Although we have shown that pure PcF triggers plant reactivity, its mechanism of action is not yet understood. Here we show that PcF, like other known fungal protein elicitors involved in pathogen-plant interaction, stimulates the activity of the defense enzyme phenylalanine ammonia a key step in understanding the mechanism of action of PcF at a molecular level is knowledge of its three-dimensional structure, we overexpressed this protein extracellularly in Pichia pastoris. The preliminary structural and functional characterization of a recombinant PcF homologue, N4-rPcF, is reported. Interestingly, although N4-rPcF is devoid of proline hydroxylation and has four additional amino acid residues attached to its N terminus, its secondary structure and biological activity are indistinguishable from wild-type PcF.Received 22 February 2003; received after revision 25 March 2003; accepted 14 April 2003  相似文献   

13.
14.
15.
The deep-sea clams Calyptogena nautilei and C. tsubasa, which live in the cold-seep area at a depth of 3570 m in the Nankai Trough, Japan, have abundant hemoglobins (Hbs) in erythrocytes, similar to other Calyptogena species. We determined the cDNA-derived amino acid sequences of Hbs from two Calyptogena species. C. tsubasa was found to contain two dimeric Hbs, Hb I consisting of 145 amino acid residues and Hb II with 137 residues, similar to known Hbs from C. soyoae and C. kaikoi. Sequence identity was over 90% among the orthologous chains of Calyptogena Hbs. On the other hand, surprisingly, C. nautilei contained two monomeric Hbs, Hb III containing 141 residues and Hb IV with 134 residues. In addition, Hbs III and IV showed only 33–42% sequence identity with Hbs I and II from other Calyptogena species. The distal (E7) histidine, one of the functionally important residues of the heme protein, is replaced by glutamine in all Hb chains of Calyptogena species. A phylogenetic analysis indicated that C. nautilei Hb III is closer to Hb I from other Calyptogena species. We suppose that a Hb gene was duplicated at least three times in an immediate ancestor of Calyptogena and, presumably depending on physiological conditions different Hb sets are being expressed: dimeric Hbs I and II in C. soyoae, C. kaikoi and C. tsubasa, and monomeric Hbs III and IV in C. nautilei. Received 13 May 2003; received after revision 5 June 2003; accepted 12 June 2003  相似文献   

16.
Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc3Man9GlcNAc2 glycans after trimming with endoplasmic reticulum (ER) -glucosidases and -mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc1Man9GlcNAc2) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man8GlcNAc2 isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc2 along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man5GlcNAc1 by the action of cytosolic endo--N-acetylglucosaminidase and -mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc3Man9GlcNAc2-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.Received 26 January 2004; accepted 25 February 2004  相似文献   

17.
Insects mostly develop on decaying and contaminated organic matter and often serve as vectors of biologically transmitted diseases by transporting microorganisms to the plant and animal hosts. As such, insects are constantly ingesting microorganisms, a small fraction of which reach their epithelial surfaces, mainly their digestive tract, where they can establish relationships ranging from symbiosis to mutualism or even parasitism. Understanding the tight physical, genetic, and biochemical interactions that takes place between intestinal epithelia and either resident or infectious microbes has been a long-lasting objective of the immunologist. Research in this field has recently been re-vitalized with the development of deep sequencing techniques, which allow qualitative and quantitative characterization of gut microbiota. Interestingly, the recent identification of regenerative stem cells in the Drosophila gut together with the initial characterization of Drosophila gut microbiota have opened up new avenues of study aimed at understanding the mechanisms that regulate the dialog between the Drosophila gut epithelium and its microbiota of this insect model. The fact that some of the responses are conserved across species combined with the power of Drosophila genetics could make this organism model a useful tool to further elucidate some aspects of the interaction occurring between the microbiota and the human gut.  相似文献   

18.
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme–substrate and –inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.  相似文献   

19.
Although widely studied in Gram-positive Streptococci and in the Gram-negative Bacteroides, there is a scarcity of information on the occurrence and nature of conjugative transposon-like elements in the well-studied Enterobacteriaceae. In fact, some of the major reviews on conjugative transposons prior to 1996 failed to mention their occurrence in this group. Recently, their presence has been reported in Salmonella, Vibrio and Proteus species, and in some cases such as the SXT element in Vibrio and the IncJ group element CTnR391, there has been some molecular characterization. The elements thus far examined appear to be larger than the common Gram-positive conjugative transposons and to be mosaic in structure, with genes derived from several sources. Recent evidence suggests that in the Enterobacteriaceae the elements may be related to enteric pathogenicity islands. The evolution, distribution and role of these elements in the Enterobacteriaceae is discussed.  相似文献   

20.
Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has been used as a model organism to study the functions of peroxisomes. Efficient oxidation of fatty acids does not only require the participation of peroxisomal enzymes but also the active involvement of other gene products. One group of important gene products in this respect includes peroxisomal membrane proteins involved in metabolite transport. This overview discusses the various aspects of fatty acid -oxidation in S. cerevisiae. Addressed are the various enzymes and their particular functions as well as the various transport mechanisms to take up fatty acids into peroxisomes or to export the -oxidation products out of the peroxisome to mitochondria for full oxidation to CO2 and H2O.Received 19 February 2003; received after revision 27 March 2003; accepted 27 March 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号