首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一种新的最近邻聚类算法   总被引:1,自引:0,他引:1  
在分析现有最近邻聚类算法所存在问题的基础上,提出了一种先利用均值规格化的思想来确定算法的初始半径,然后根据启发式规则修改聚类半径的新的最近邻聚类算法.同时,给出了聚类有效性函数对得到的聚类结果进行合理性判断.  相似文献   

2.
一种改进的模糊聚类算法   总被引:10,自引:0,他引:10  
针对现有聚类算法在参数输入、停机条件等方面存在诸多人为控制因素的问题,采用信息熵理论使聚类标准客观化,同时结合模糊聚类的思想,以隶属度作为信息熵计算的基础,并采用谱系的方法确定聚类数目,从而改进模糊聚类算法.研究表明,提出的基于信息熵的算法能够比较客观、科学地反映实际聚类情况.  相似文献   

3.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

4.
将万有引力和牛顿第二运动定律的思想引入到聚类分析中,提出了一种基于引力的聚类算法CABG.该算法可以自动决定目标数据集中的簇的个数,并且能发现任意形状的簇且可以过滤“噪声”数据.实验结果表明CABG可以产生高质量的聚类结果.  相似文献   

5.
一种基于密度的分布式聚类算法   总被引:1,自引:0,他引:1  
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好.  相似文献   

6.
一种新的K-Means蚁群聚类算法   总被引:1,自引:0,他引:1  
针对蚁群聚类算法聚类质量不高的原因,使用K-Means算法改进蚁群聚类规则,提出一种新的K-Means蚁群聚类算法(KM-AntClust),并通过实验验证新算法的聚类效果.实验结果表明,新的算法可以明显提高聚类质量.  相似文献   

7.
8.
为解决模糊层次聚类算法无法收敛的问题,提出一种改进的模糊层次聚类算法.算法在分群前先进行数据处理,将特征向量相同的群合并成一个新的群,再使用模糊层次聚类算法分群,最后使用K-means算法将类簇收敛为想要的数量.实验结果表明,本算法具有较好的稳定性和分群效果,聚类质量高.  相似文献   

9.
作为数据挖掘技术的重要组成部分,聚类分析在很多领域有着广泛的应用.蚁群算法由于采用分布式并行处理和正反馈机制,具有较好的全局收敛性,并且在解决多种NP难问题中取得了成功.将信息素扩散模型引入到蚁群聚类算法中,通过设计新的信息素更新机制,提出一种新的基于信息素扩散的蚁群聚类算法.实验结果表明新算法在聚类效果上比基本的蚁群聚类算法有较明显的改善.  相似文献   

10.
硬聚类算法HCM的求解结果通常是局部最优解,本文将遗传算法应用于HCM聚类算法,同时考虑到该算法实现时的效率和开销,最终提出了一种新的算法MHCM聚类算法。测试数据实验表明采用MHCM聚类算法的结果90%以上能够取得全局最优解,远远超出了采用HCM算法所取得全局最优解的次数,证明了本算法的可推广性。  相似文献   

11.
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers.  相似文献   

12.
启发式聚类算法具有收敛速度快、易实现等优点,但初始解敏感,严重影响了聚类算法的质量。针对这一问题,提出了一种烟花搜索导向的多路启发式聚类算法。该算法通过多次调用经典启发式聚类算法,产生多个局部最优解;在搜索空间中以多个局部最优解为搜索起点,采用烟花搜索进行多路搜索;基于信息熵浓度设计烟花选择算子确定搜索方向;再经过变异、映射、偏移算子变换局部最优中心点,以发现质量更好的搜索起点;直至算法收敛获得新的搜索起点;最终以新的搜索起点调用经典启发式聚类算法获得高质量聚类结果。实验结果表明,烟花搜索导向的多路启发式聚类算法在不同数据集上的聚类质量明显高于对比其他聚类算法的聚类质量。  相似文献   

13.
0Introduction Withmoreandmorestudyingprojectsapplythedataminingtechnologytointrusiondetection,agreatdealofdataminingalgorithmsforintrusiondetectionhavebeenre alized[1],thetypicalis:associationruleminingalgorithm,frequencysceneruleminingalgorithm,classificationalgo rithm,andclusteringalgorithm.Thefirstthreealgorithmofthosebelongto“thesupervisedstudying”,whichneedatrain ingdatasetofgoodqualityandwithmarking,butitisnoteasyusuallytogetthetrainingdataset[2].However,cluste ringalgorithmis“theunsu…  相似文献   

14.
一种基于Dijkstra算法的启发式最优路径搜索算法   总被引:8,自引:0,他引:8  
为了建立一个高效的路径搜索引擎,针对大型应用系统中寻径算法的平衡最优性、时间复杂度以及空间复杂度问题,从经典Dijkstra算法出发,将AI领域的决策机制引入到路径搜索中来,提出了一个启发式最优路径搜索算法.该算法在寻径过程中引入代价函数,由代价函数来决定寻径策略(即优先搜索哪些中间节点),以期望减少搜索节点数.给出了该算法得到最佳解的条件及其证明过程,并且以实例数据对两种算法进行了对比测试.  相似文献   

15.
提出了一个基于分区扫描方法和禁忌算法的车辆路径问题的启发式算法,并用一个例子说明其应用.  相似文献   

16.
定位-运输路线安排问题(LRP)是分销网络设计和物流管理决策中的难题,属于NP难问题,求解有一定难度.文章通过构造辅助函数对优化问题约束条件的处理,基于分层次实现多个目标的思路将LRP看作一个整体,利用具群体智能的粒子群算法进行求解,避免了基于两阶段算法的不足,减小了在进化过程中停滞于局部最优解的概率.为粒子群算法在大规模组合优化问题中实际应用做了有益的尝试.  相似文献   

17.
用一个有向图表示旅行商避开某一城市到1个顶点的所有最短路径,并在每条弧上定义一个线性表,用以记录所有包含该弧的图,从而将判断某条弧和某个顶点是否应该存在于某个子图中的最短路径上的问题转化为线性表的相关操作,进而讨论了图上的弧都在某一最短路径上的充要条件,以及如何顺序产生第1列到第n列的顶点上的图,如何从这些图上搜索出近似最优解的方法.  相似文献   

18.
针对传统κ-均值聚类方法不能处理大规模聚类的问题,提出一种加速κ-均值聚类方法,称为S_κ-均值聚类算法.该方法在传统κ-均值方法基础上,首先随机抽取一定量的样本点作为初始工作集,并在初始工作集上进行聚类,求出相应的类中心.然后对剩余的样本,根据其与已得到的类的相似度进行一次性的划分,从而得到划分后的类别.由于该方法只有较小规模的初始工作集需要进行一般的κ-均值聚类,而剩余的大多数数据不需要进行反复迭代就可以直接得到其聚类结果,从而在很大程度上提高了聚类效率,解决了传统κ-均值聚类方法不能用于处理大规模数据聚类的问题.实验结果表明,与传统κ-均值聚类方法相比,S_κ-均值聚类算法的聚类速度得到了明显提高,能够有效处理大规模数据的聚类问题.  相似文献   

19.
一种基于权重的动态分簇算法   总被引:1,自引:0,他引:1  
基于分簇算法,提出了一种基于权重的动态分簇算法(WDCA).该算法综合考虑了节点与其邻居节点的相对速度,节点到其邻居节点的平均距离,节点的能量以及节点的邻居数等因素来选择簇头;同时取消了一般加权分簇算法中簇成员到簇头只有一跳的限制,而是根据簇内成员数动态调整.模拟结果表明,与经典的加权分簇算法(WCA)相比,该算法的簇头稳定性、网络的负载均衡都有很大提高.  相似文献   

20.
由于通常的邻域运算会改变图像边缘点的灰度值,使图像的边缘变得模糊,为了改善这一现象,提出了一种基于引导图像的边缘噪声滤波算法。该算法由局部线性模型推导而来,将原始图像或其他变换形式定义为引导图像。通过对引导图像进行分析,并调节正则化参数,利用引导图像掩模对图像的边缘进行平滑处理,有效地去除了噪声。通过与其他四种常用的滤波算法进行对比实验,表明该算法的均方误差MSE仅为0.0015,峰值信噪比PSNR为28.26,远远优于其他四种常见滤波算法,不仅对图像进行了平滑去噪,在很大程度上还保护了图像的边缘信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号