首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
系统研究1-(N,N-二乙基氨甲酰基甲基)-3-甲基咪唑氯盐([MDCBmim]Cl),1-(N,N-二乙基氨甲酰基甲基)-3-甲基咪唑氟硼酸盐([MDCBmim]BF4)、1-丁基-3-甲基咪唑氟硼酸盐([Bmim]BF4)3种离子液体的双水相体系对苯丙氨酸的萃取性能.考察了影响萃取过程的主要因素如pH、离子液体和磷酸盐的用量、体系温度.研究结果表明,功能化离子液体双水相体系对苯丙氨酸的萃取性能远好于常规离子液体.当pH=13时,在[MDCBmim]Cl/K2HPO4双水相体系中,苯丙氨酸的分配系数最高可达130,对其分配系数顺序为:[MDCBmim]Cl>[MDCBmim]BF4>[Bmim]BF4.  相似文献   

2.
基于离子液体双水相体系相平衡组成的高度不对称性,提出了"动态参数"模拟的概念,以体系在298.2K、308.2K和323.2K温度下的数据为样本,建立了神经网络关联模型,经比较,其精度优于文献中的Othmer-Tobias/Bancroft方程.此外,模型对实验数据的依赖性较弱,在一定的范围内,具有对体系相平衡组成进行直接预测的能力.  相似文献   

3.
建立了卷烟烟气中邻-苯二酚、间-苯二酚、对-苯二酚、苯酚、邻-甲酚、间-甲酚和对-甲酚几种酚类物质的高效液相色谱检测方法.用25%的乙醇水溶液对卷烟样品进行超声提取,再经离子液体双水相分离富集,用高效液相色谱二极管阵列检测器(HPLC-FLD)测定.该方法的富集倍数可以达到20倍,整个操作过程在常温下进行,时间不超过15 min.实验结果表明,在0.02~20 ng/L范围内,几种酚类物质的峰面积均与其质量浓度呈线性相关,R2≥0.999 6,检出限分别为0.06,5.2,1.2,5.3,0.03,0.04 ng/L,相对标准偏差为1.4%~4.6%,回收率为85.1%~96.9%.该方法具有良好的重现性、精密度和更低的检测限.  相似文献   

4.
室温离子液体作为一种重要的绿色溶剂,由于在金属离子、小分子有机物的萃取分离,气体吸附分离以及作为液相和气相色谱固定相等许多分离过程中体现出高分离效率和高选择性的特点,正在成为分离科学研究的前沿领域.文章总结了室温离子液体在分离科学领域中的应用进展,并对其应用领域和发展前景做了展望.  相似文献   

5.
由于独特的物理化学性能和优良的生物兼容性,近年来离子液体被创造性地应用到蛋白质结晶中,并取得了理想的效果。在介绍了离子液体的种类、性质等背景的基础上,重点阐述了近期离子液体在蛋白质结晶中的应用研究现状,并初步探讨了离子液体对蛋白质结晶行为的影响机理,分析了未来离子液体在蛋白质结晶领域的应用前景。  相似文献   

6.
 糖酯通常由亲水的糖分子和亲油的脂肪酸分子组成,是一类非离子型生物表面活性剂,具有发泡力强,泡沫稳定等优良的性质,被广泛应用于医药、化妆品等多个行业,其合成方法主要有溶剂法、微乳化法、无溶剂法和酶催化法,但是传统的合成方法中通常采用不易回收的有毒溶剂,加大了产品后续分离和精制的难度,导致了其在食品等行业应用的限制,而离子液体作为一种新型的环境友好溶剂和液体酸催化剂,不仅无毒、具有可设计性,且易于回收,循环利用率较高,可以很好地解决这一问题。文中概述了离子液体的特点和类型,阐述了近年来在合成糖酯的溶剂法和酶法中,离子液体作为溶剂替代品的研究现状,并对其在应用中存在的优缺点做了一些说明,最后对其研究中存在的问题提出了一些看法,对其研究发展的方向进行了展望。  相似文献   

7.
设计合成了一系列咪唑基羧酸盐离子液体:1丁基3甲基咪唑甲酸盐,1丁基3甲基咪唑乙酸盐,1丁基3甲基咪唑乳酸盐,1丁基3甲基咪唑乙醇酸盐,1丁基3甲基咪唑苯甲酸盐和1丁基3甲基咪唑二氰胺盐,并采用氢核磁方法对这些离子液体进行了表征和结构确认。研究了离子液体的阴离子结构、体系溶解温度对木质素和木聚糖溶解度的影响。根据不同离子液体对纤维素、木聚糖、木质素溶解性能的差异,实现了模拟生物质原料3个组分的选择性逐级分离,木质素、木聚糖和纤维素的分离质量分数分别为76.9%、75.4%和99.3%。离子液体[C4mim][N(CN)2]的回收质量分数为89.6%。  相似文献   

8.
在25,35和45℃测定了离子液体([C4mim]Br,[C6mim]Br,[C8mim]Br)对蛋白质(BSA、溶菌酶)的荧光猝灭光谱,分析了离子液体与蛋白质相互作用的荧光猝灭规律,计算了荧光猝灭过程的猝灭常数和热力学参数.结果表明:离子液体可以有规律地使蛋白质的荧光猝灭,猝灭是由离子液体与蛋白质的碰撞引起的,是一个动态猝灭过程.该过程的猝灭常数很小,说明离子液体与蛋白质之间的相互作用较弱.热力学研究表明,猝灭过程是一个熵驱动过程,疏水相互作用是其主要特征.  相似文献   

9.
离子液体(ionic liquids,ILs)具有许多独特的理化性质,可作为传统有机溶剂吸收分离气体的优良替代物。预测型分子热力学模型,真实溶剂似导体屏蔽模型(conductor-like screening model for real solvents,COSMO-RS)能够有效模拟“气体+离子液体”体系,预测气体在离子液体中的溶解度及选择性。介绍了COSMO-RS模型中重要的理论参数,阐释了COSMO-RS模型计算离子液体性质时的类三元体系,总结了COSMO-RS方法模拟离子液体吸收分离CO2、SO2、芳香族VOCs(volatile organic compounds)、脂肪族VOCs、水蒸气等气体的研究进展,讨论了COSMO-RS模型针对离子液体体系的校正和优化,展望了COSMO-RS模型筛选离子液体用于气体捕集和分离的未来研究方向。  相似文献   

10.
离子液体及其在萃取分离中的应用   总被引:4,自引:1,他引:3  
介绍了离子液体的分类与特点,并对离子液体在萃取分离中应用的研究进展进行了评述.  相似文献   

11.
简述了离子液体(Ionic Liquids,ILs)的概念和结构分类及ILs在乏核燃料后处理循环中应用的意义,详细介绍了ILs在镧系、锕系元素分离中的研究现状,并提出未来工作将采用第一性原理和分子动力学计算相结合的方法对ILs体系进行理论研究.  相似文献   

12.
<正>离子液体双水相是Rogers等[1]在2003年首次提出的一种新型双水相体系.与传统的双水相相比,离子液体双水相具有粘度低、分相快、不易乳化、萃取效率高,离子液体可以回收利用等优点,从而受到学术和工业界的重视.然而,文献中所使用的离子液体均为咪唑类、吡啶类离子液体,这些离子液体对生物体具有毒害作用,因此设计合成生物相容性离子液体成为当  相似文献   

13.
桑潇 《科技信息》2008,(2):246-247
本文综述了离子液体在化学反应、催化反应、分离过程、萃取、功能材料、电化学以及纳米材料合成中的应用,并展望了离子液体的应用前景。  相似文献   

14.
离子液体用于酚类和胺类化合物的萃取   总被引:3,自引:2,他引:1  
酚类和胺类化合物是两种重要的有机污染物,研究它们的萃取分离一直是环保领域的重要课题之一[1].离子液体作为一种绿色可设计溶剂已引起国内外学术界和产业界的高度关注[2].研究用离子液体萃取水溶液中酚类和胺类有机化合物具有重要的应用前景.  相似文献   

15.
绿色溶剂离子液体的合成方法及在萃取分离中的应用   总被引:2,自引:0,他引:2  
综述了离子液体的合成方法,分析比较了不同合成方法的特点,展望了其在萃取分离中的应用,并分析了当前制约离子液体绿色化和工业化应用的若干因素.  相似文献   

16.
系统地研究离子液体对ReO_4~-和TcO_4~-的萃取。结果发现,咪唑类和季铵盐类离子液体可通过阴离子交换机理高效萃取ReO_4~-和TcO_4~-。其中,PF_6~-类离子液体对ReO_4~-和TcO_4~-的萃取效率明显高于NTf_2~-类离子液体。当阴离子相同时,离子液体阳离子侧链增长,萃取效率增大。增加水相HNO_3浓度或在水相中加入相应离子液体的阴离子可以抑制ReO_4~-和TcO_4~-的萃取。水相中加入相应离子液体的阳离子则可以促进萃取反应进行。在低酸度下,己基三丁基铵双三氟甲烷磺酰亚胺[N_(6,444)][NTf2]和1-辛基-3-甲基咪唑六氟磷酸盐[C_8mim][PF_6]对模拟废液中的ReO_4~-均具有很好的萃取选择性。LiNTf_2和KPF_6水溶液可以分别实现对[N_(6,444)][NTf_2]和[C_8mim][PF6]中ReO_4~-的有效反萃。  相似文献   

17.
在煤和石油等不可再生能源日益短缺的情况下,如何有效利用生物质显得尤为重要。糠醛是迄今为止无法用石油化工原料合成而只能用玉米芯、甘蔗渣等农林作物纤维发酵生产的一种重要的化工原料^[1],由于发酵液中糠醛的含量较低,而且发酵过程伴生有大量的乙酸等副产物。因此,研究高效、经济的糠醛分离方法具有重要的意义。  相似文献   

18.
综述了离子液体介质中前手性底物的不对称加氢反应的最新进展,特别是对近年来前手性碳-碳双键和前手性酮在离子液体介质中的不对称加氢进行了全面的综述.  相似文献   

19.
介绍离子液体的研究和应用: 离子液体在化学反应中和分离分析中的研究,离子液体在气相色谱和液相色谱中的应用.  相似文献   

20.
离子液体作为一种“绿色溶剂”,在化学反应、分离过程、电化学等领域一直都是研究的热点.该文介绍了离子液体在分离环境污染物、环境监测以及在环境保护等方面的应用,了解离子液体应用于环境领域的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号