首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes of somatostatin receptors exist in the nervous system and Hatschek's pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek's pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek's pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.  相似文献   

2.
Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes of somatostatin receptors exist in the nervous system and Hatschek s pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek s pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek s pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.  相似文献   

3.
Immunohistochemical localization of a-melanocyte-stimulating hormone (α-MSH) in the nervous system, Hatschek's pit and other tissues of amphioxus (Branchiostoma belcheri) was performed using the antibody against synthetic α-MSH. The results revealed that α-MSH-like immunoreactive cells were distributed at the dorsal side and ventral side of brain vesicle, the dorsal side and the surrounding of nerve tube, and in the epithelial cells of Hatschek's pit, the zone 1, 3, and 6 of endostyle and gut. The immunoreactive substance was also found in the primary oocytes of the small and large growth stage of ovary and early stage spermatogenic cells in testis. These findings indicate that α-MSH is an ancient and highly conserved hormone and it is extensively distributed in amphioxus. Although Hatschek's pit in amphioxus does not have a structure of the intermediate lobe of vertebrate adenohypophysis, it has already hosted α-MSH-like endocrine cells, implying that the functional differentiation of α-MSH-like cells occurred earlier than the differentiation of the tissue structure. The results of the present study provided a new evidence for the endocrinology of Hatschek's pit and for the origin and evolution of vertebrate adenohypophysis.  相似文献   

4.
《科学通报(英文版)》1999,44(10):908-908
Using gonadotropin-releasing hormone (GnRH) anti-idiotypic antibodies and APA im-munohistochemical method, the immunoreactivity of GnRHR in the nervous system, Hatschek's pit and gonads of amphioxus has been located. It is found for the first time that the immunoreactivity of GnRHR exists in the nerve cells and fibers in the amphioxus's brain and nerve tube and the epithelial cells of Hatschek's pit at the different stages of gonadal development. At the same time, it is also found that GnRHR also exists in the ovary and testis of different developed stages. These findings provide morphological new proof for the informative transfer and regulation between brain and Hatschek's pit mediation by GnRHR, and for the understanding of the mechanism of action on the reproductive endocrine control axis among brain-Hatschek's pit-go-nads.  相似文献   

5.
The distribution of ghrelin-like immunoreactive cells in amphioxus (Branchiostoma belcheri) was investigated by using immunohistochemical staining with rabbit antiserum against synthetical mammalian ghrelin. The results showed that ghrelin-like immunoreactive cells were distributed widely in the nervous system, Hatschek's pit, wheel organ, digestive tract and gonads (ovary and testis). In nervous system, ghrelin-like immunoreactive neurons and their protrusions were distributed specifically on the dorsal side, ventral side and funnel part of brain vesicle, with a few dispersive immunoreactive nerve cells and their fibers in nerve tube. Ghrelin-like immunoreactivities were also detected in Hatschek's pit epithelial cells and wheel organ cells, with positive substance located along cell membrane. In digestive tract, ghrelin-like immunoreactive cells existed in hepatic diverticulum, anterior and posterior region of midgut, and could be classified into two types, closed- and opened-type endocrine cells. The number of positive cells was most in hepatic diverticulum, secondary in posterior region of midgut and least in anterior region of midgut. In gonads, ghrelin-like immunoreactive substance was detected in oogonia, oocytes and follicle cells in ovary at the small and large growth stages and in early spermatogenic cells and Sertoli cells in testis. The extensive distribution of ghrelin-like cells in amphioxus suggested that these kinds of cells are conservative in evolution and diversified in function. At the same time, we found for the first time that ghrelin-like immunoreactive cells existed in brain vesicle and Hatschek's pit, which provided new morphological evidence for the existence of an activation pathway between brain vesicle and Hatschek's pit for the regulation of growth hormone excretion.  相似文献   

6.
Immunocytochemical studies on the nervous system,Hatschek's pit,digestive tract and gonads tissues of an amphioxus(Branchiostoma belcheri)were performed using polyclonal antibodies against human corticotrophin-releasing hormone(CRH)and human adrenocorticotropin(ACTH).The results showed that many CRH-like immunoreactive neurons were distributed specifically on the dorsal side and ventral side of brain vesicle,while a few CRH-like neurons and their fibers in spinal cord.At the same time,the epithelial cells in the basic region of Hatschek's pit were shown immunopositive to CRH antibody.In gonads(ovary and testis),CRH-immunopositive substance was localized in the cytoplasm near oocyte nucleus and in early spermatogenic cells.ACTH-like immunoreactivities were observed specially in the neurons and their protrusions localized on the ventral side of the brain vesicle and in spinal cord,and also in epithelial cells of Hatschek's pit,enteric neurons of digestive tract,oocytes in ovary and in early spermatogenic cells as well.It was found for the first time that CRH-like neurons existed in the middle region of brain vesicle(corresponding to the hypothalamus of vertebrates)and ACTH-like immunopositive cells existed in Hatschek's pit,implying that a control mechanism between brain vesicle and Hatschek's pit maybe had been already built in amphioxus as that in vertebrates.The present study will provide new morphological evidence for the origin and evolution of ACTH.In addition,the immunoreactivities of CRH and ACTH in the digestive tract and gonads suggested other physiological function of CRH and ACTH in amphioxus.  相似文献   

7.
Using histological and histochemical methods the structure of the endostyle in amphioxus at different gonadal developmental stages is studied, and the immunocytochemical localization of thyroglobulin (Tg) and thyrotropin (TSH) in the endostyle, Hatschek's pit and brain vesicle is investigated. The results not only confirm the previous report that the endostyle is composed of 6 zones and the cells of zone 5 are thyroid hormone synthesizing cells, but also find the thyroxine synthesis in and secretion from zone 3. In addition, the epithelial cells in Hatschek's pit and the neural cells in brain vesicle are immunopositive for TSH, and the immunoactivity is correlated with gonadal cycle. The present study may provide morphological proof for the hypothesis that the secretory activity of thyroid cells is regulated by TSH from Hatschek's pit and brain vesicle.  相似文献   

8.
Using gonadotropin-releasing hormone (GnRH) anti-idiotypic antibodies and APA immunohistochemical method, the immunoreactivity of GnRHR in the nervous system, Hatschek’s pit and gonads of amphioxus has been located. It is found for the first time that the immunoreactivity of GnRHR exists in the nerve cells and fibers in the amphioxus’s brain and nerve tube and the epithelial cells of Hatschek’s pit at the different stages of gonadal development. At the same time, it is also found that GnRHR also exists in the ovary and testis of different developed stages. These findings provide morphological new proof for the informative transfer and regulation between brain and Hatschek’s pit mediation by GnRHR, and for the understanding of the mechanism of action on the reproductive endocrine control axis among brain-Hatschek’s pit-gonads.  相似文献   

9.
This review summarizes the recent discoveries of many authors who found that in amphioxus Hatschek’s pit is capable of synthesizing vertebrate gonadotropin-like substance, and that the content of gonadotropin-releasing hormone in the amphioxus’ body shows a positive correlation with the reproductive cycle, and that the sex steroid hormone exists in gonads. Exogenous hormones could promote gonadal development, maturation and reproductive activity in amphioxus. A possible implication might be that the reproductive activity in amphioxus is regulated by reproductive hormones like vertebrate, indicating the existence of primitive reproductive endocrine regulatory axis, brain vesicle-Hatschek’s pit-gonads axis, as compared with regulatory axis of vertebrate. It will provide a new line for establishing the position of reproductive endocrine evolution in lancelet.  相似文献   

10.
It is found for the first time that, after the structure and endocrine function of Hatschek’s pit ofBranchiostoma belcheri are damaged by monosodium glutamate (MSG) treatment in breeding season, the ovulation of mature ovary, as well as the development of both ovary and testis of large-growth stage are obstructed and stagnated; and in non-breeding season, the process of gonadal development is delayed. The disturbed ovulation and gonadal development can definitely be restored with exogenous gonadotropic hormone as the therapeutical substitute. These results may provide new proof for the complete understanding of the evolutional process of pituitary function in vertebrates and playing an important role in the reproductive endocrine control system of Hatschek’s pit of amphioxus.  相似文献   

11.
GABA affects the release of gastrin and somatostatin from rat antral mucosa   总被引:2,自引:0,他引:2  
R F Harty  P A Franklin 《Nature》1983,303(5918):623-624
gamma-Aminobutyric acid (GABA) is regarded as the major inhibitory neurotransmitter in the central nervous system of vertebrates. GABA exerts its inhibitory actions by interacting with specific receptors on pre- and postsynaptic membranes and has been shown to inhibit somatostatin release from hypothalamic neurones in vitro. Concepts of innervation of the gastrointestinal tract have been expanded by recent studies which suggest that GABAergic neurones are not confined solely to the central nervous system but may also exist in the vertebrate peripheral autonomic nervous system. Jessen and coworkers have demonstrated the presence, synthesis and uptake of GABA by the myenteric plexus of the guinea pig taenia coli, and have documented the presence of glutamic acid decarboxylase (GAD) in isolated myenteric plexus. This enzyme is responsible for the conversion of glutamic acid to GABA in GABAergic neurones. The possibility that GABA may have a role in neurotransmission or neuromodulation in the enteric nervous system of the vertebrate gut has been suggested by several investigators. Furthermore, GABA receptors have been demonstrated on elements of the enteric nervous system. The effects of GABA on gastrointestinal endocrine cell function have not been examined. We report here the effects of GABA on gastrin and somatostatin release from isolated rat antral mucosa in short-term in vitro incubations.  相似文献   

12.
To determine whether gonadotropin-like substance in the brain and Hatschek' s pit of amphioxus issynthesized by the tissue in situ or transported from other tissue, a histochemical study was carried out by in situ hy- bridization using digoxigenin (DIG)-labelled LHβRNAprobes. The results showed that LHβmRNA expressed in the nerve cells of brain and the epithelial cells of Hatschek' s pit, thus providing new evidence for the homology of pituitary of ver- tebrates with Hatschek' s pit and the functional evolution of gonadotropin.  相似文献   

13.
M G?thert 《Nature》1980,288(5786):86-88
Somatostatin in a hypothalamic peptide hormone which inhibits growth hormone release from the anterior pituitary. However, biochemical and morphological investigations have revealed that somatostatin is located not only in the hypothalamus but also in other brain areas (for example the cerebral cortex) where it occurs and in nerve cell bodies and fibres from which it can be released in a Ca2+-dependent manner. It has therefore been suggested that the neuropeptide may have functions in the central nervous system other than its effect on growth hormone release; one possible action is that of a neuromodulator. Therefore, hypothalamic and cerebral cortical slices of the rat were used to examine whether somatostatin modifies the electrically or CaCl2-evoked release of tritiated monoamines from monoaminergic neurones. it is reported here that somatostatin inhibits 3H-noradrenaline release from the hypothalamus (but not from the cerebral cortex) but does not affect the release of 3H-dopamine and 3H-serotonin.  相似文献   

14.
G Aguilera  J P Harwood  K J Catt 《Nature》1981,292(5820):262-263
The octapeptide angiotensin II is a major regulator of the adrenal glomerulosa zone, acting both as an acute stimulus of aldosterone secretion and as a trophic hormone which increases steroidogenic enzymes and angiotensin II receptors in glomerulosa cells. Angiotensin II also mediates the adrenal effects of altered sodium balance, and is essential for the aldosterone response to sodium restriction. However, the adrenal effects of angiotensin II are attenuated during sodium loading, suggesting that other local or humoral factors modulate its actions on adrenal glomerulosa function. Somatostatin, the somatotropin release inhibiting factor of the hypothalamus, has been shown to inhibit the secretion and action of several pituitary and non-pituitary hormones. Because somatostatin has been found in several non-neural tissues, and seems to act as a local regulator of endocrine function, we have now examined the possibility that it may also modulate the effects of angiotensin II in the adrenal glomerulosa cell. Our studies have shown that low concentrations of somatostatin specificity inhibit the production of angiotensin II-stimulated aldosterone, and that this action is mediated by specific, high-affinity receptors for somatostatin in the zona glomerulosa.  相似文献   

15.
Hein L  Altman JD  Kobilka BK 《Nature》1999,402(6758):181-184
The sympathetic nervous system regulates cardiovascular function by activating adrenergic receptors in the heart, blood vessels and kidney. Alpha2-adrenergic receptors are known to have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system; however, the individual roles of the three highly homologous alpha2-adrenergic-receptor subtypes (alpha2A, alpha2B, alpha2C) in this process are not known. We have now studied neurotransmitter release in mice in which the genes encoding the three alpha2-adrenergic-receptor subtypes were disrupted. Here we show that both the alpha2A- and alpha2C-subtypes are required for normal presynaptic control of transmitter release from sympathetic nerves in the heart and from central noradrenergic neurons. Alpha2A-adrenergic receptors inhibit transmitter release at high stimulation frequencies, whereas the alpha2C-subtype modulates neurotransmission at lower levels of nerve activity. Both low- and high-frequency regulation seem to be physiologically important, as mice lacking both alpha2A- and alpha2C-receptor subtypes have elevated plasma noradrenaline concentrations and develop cardiac hypertrophy with decreased left ventricular contractility by four months of age.  相似文献   

16.
G J Kilpatrick  B J Jones  M B Tyers 《Nature》1987,330(6150):746-748
Functional serotonin (5-hydroxytryptamine, 5-HT) receptors have been divided into three subtypes: 5-HT1-like, 5-HT2 and 5-HT3 (ref. 1). Brain binding sites have been identified for both the 5-HT1 and 5-HT2 subtypes. Receptors of the 5-HT3 type have been characterized on isolated peripheral tissue models such as the rat vagus nerve, guinea-pig ileum and isolated rabbit heart. Using these models, selective 5-HT3 receptor antagonists such as MDL 72222 (ref. 5), ICS 205-930 (ref. 6), GR38032F (ref. 7) and BRL 43694 (ref. 8) have been developed. Recently, GR38032F, MDL 72222 and ICS 205-930 have been shown to have behavioural effects in rodents and primates that undoubtedly reflect an action in the central nervous system (refs 9-11 and unpublished observations), suggesting the existence of 5-HT3 receptors in the brain. Here we report direct evidence for the existence of 5-HT3 receptors in rat brain tissue and their distribution, based on high affinity binding of the potent 5-HT3 receptor antagonist 3H-GR65630 to homogenates of rat entorhinal cortex. Selective 5-HT3 receptor antagonists and agonists inhibited binding of 3H-GR65630 with high affinities which correlated well with their actions on the rat isolated vagus nerve. Binding was differentially distributed throughout the brain with high concentrations in cortical and limbic areas.  相似文献   

17.
Ghrelin induces adiposity in rodents   总被引:127,自引:0,他引:127  
Tschöp M  Smiley DL  Heiman ML 《Nature》2000,407(6806):908-913
The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.  相似文献   

18.
Molecular cloning and expression of brain-derived neurotrophic factor   总被引:123,自引:0,他引:123  
During the development of the vertebrate nervous system, many neurons depend for survival on interactions with their target cells. Specific proteins are thought to be released by the target cells and to play an essential role in these interactions. So far, only one such protein, nerve growth factor, has been fully characterized. This has been possible because of the extraordinarily (and unexplained) large quantities of this protein in some adult tissues that are of no relevance to the developing nervous system. Whereas the dependency of many neurons on their target cells for normal development, and the restricted neuronal specificity of nerve growth factor have long suggested the existence of other such proteins, their low abundance has rendered their characterization difficult. Here we report the full primary structure of brain-derived neurotrophic factor. This very rare protein is known to promote the survival of neuronal populations that are all located either in the central nervous system or directly connected with it. The messenger RNA for brain-derived neurotrophic factor was found predominantly in the central nervous system, and the sequence of the protein indicates that it is structurally related to nerve growth factor. These results establish that these two neurotrophic factors are related both functionally and structurally.  相似文献   

19.
Cloning and expression of human and rat D1 dopamine receptors   总被引:25,自引:0,他引:25  
The importance of the dopaminergic system in brain function has been emphasized by its association with neurological and psychiatric disorders such as Parkinson's disease and schizophrenia. On the basis of their biochemical and pharmacological characteristics, dopamine receptors are classified into D1 and D2 subtypes. As the most abundant dopamine receptor in the central nervous system, D1 receptors seem to mediate some behavioural responses, modulate activity of D2 dopamine receptors, and regulate neuron growth and differentiation. The D dopamine receptor has been cloned by low-stringency screening. We report here the cloning of human and rat D1 dopamine receptors by applying an approach based on the polymerase chain reaction. The cloned human D1 dopamine receptor has been characterized on the basis of four criteria: the deduced amino-acid sequence, which reveals that it is a G protein-coupled receptor; the tissue distribution of its messenger RNA, which is compatible with that of the D1 dopamine receptor; its pharmacological profile when transfected into COS-7 cells; and its ability to stimulate the accumulation of cyclic AMP in human 293 cells.  相似文献   

20.
F L Kidd  J T Isaac 《Nature》1999,400(6744):569-573
Most of the fast excitatory synaptic transmission in the mammalian brain is mediated by ionotrophic glutamate receptors, of which there are three subtypes: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate), NMDA (N-methyl-D-aspartate) and kainate. Although kainate-receptor subunits (GluR5-7, KA1 and 2) are widely expressed in the mammalian central nervous system, little is known about their function. The development of pharmacological agents that distinguish between AMPA and kainate receptors has now allowed the functions of kainate receptors to be investigated. The modulation of synaptic transmission by kainate receptors and their synaptic activation in a variety of brain regions have been reported. The expression of kainate receptor subunits is developmentally regulated but their role in plasticity and development is unknown. Here we show that developing thalamocortical synapses express postsynaptic kainate receptors as well as AMPA receptors; however, the two receptor subtypes do not colocalize. During the critical period for experience-dependent plasticity, the kainate-receptor contribution to transmission decreases; a similar decrease occurs when long-term potentiation is induced in vitro. This indicates that during development there is activity-dependent regulation of the expression of kainate receptors at thalamocortical synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号