首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

2.
设 P(α,β,n)(x)(α,β>-1)是 n 阶 Jacobi 多项式,本文引入以(1+x)p(α,β,n)(x)的零点集{x_k}_(k=0)~n 作为基点的 Hermitc 插值 H_(2n+1)(f,x)。我们研究用 H_(2n+1)(f,x)同时逼近函数及其导数的问题。  相似文献   

3.
本文讨论了一类以Jacobi节点为基点的Bernstein型插值算子F_n(f,x)的逼近阶。本文所得的主要结果是:设f(x)∈C_([-1,1]),则|F_n(f,x)-f(x)|≤C[ω_2(f,((1-x~2)~(1/2))/n)+ω(f,1/n~2)],它改进了O.Kis和孙燮华对同类问题所做的结果。  相似文献   

4.
关于Legendre多项式零点为节点的Hermite.Fejer插值算子,文[1]指出,对于f(x)∈C[-1,1],在(-1,1)的任意内闭区间上,H—F算子一致收敛于f(x)。由于Legendre多项式零点不像Tchebyshev多项式零点那样能用显式表出,因此,对其逼近阶的估计稍为困难.崔明根在[2]中给出的逼近阶估计为O(1)1/(1-x~2)ω(f,1/(n~(1/2)))本文给出进一步估计,得到逼近阶为O(1)1/(1-x~2)ω(f,(lnn)/n),这里ω(f,δ)的为函数f(x)连续模。记1>x_1~(n)>x_2~(n)>…>x_2~(n)>-1为n阶Legendre多项式L_n(x)的n个零点,{C_k~(n)}_k~n=1为[-1,1]上Legendre-Gauss数值积分系数,则有  相似文献   

5.
设n是偶数,P_(n-1)(x)是Legendre多项式,R_n(f,x)是以(1-x~2)P~(?)_(n-1)(x)的零点为基点的所谓(0,2)型插值多项式。本文构造了两个函数类H_(ω_2),H_(ω_1)~*,研究了R_n(f,x)逼近H_(ω_2),H_(ω_1)~*中函数f(x)的阶,并且验证了所给出的逼近阶是最佳的。  相似文献   

6.
设非线性函数,f(x)∈C[-1,1]是非负的,f′(x)∈C[-1,1],f■(x)=f(x) ε,其中ε<0,C■是与ε无关的常数,当,f(x)满足[f'(x)]~2/f_■(x)≤C■时,存在次数不超过n的代数多项式P_n(x),使得f(x)-1/P_n(x)1≤C_f~″·1/nω(f′,1/n)(C_f~■仅与C■有关)。根据这个定理,得到多项式f(x)=x~2或x_ ~2的倒数的逼近阶是0(2/n~2)。  相似文献   

7.
设A是一个n阶的任意复矩阵且E是A的Hermite秩1扰动,即E=xx',其中x是n维的复列向量,x'是x的共轭转置向量.则A+E为矩阵A的Hermite秩1修正矩阵.基于矩阵分析理论中Hermite矩阵特征值分布的性质,研究得到了矩阵A特征值的任意Hermite秩1修正扰动的上下界限,即给出了矩阵A+E特征值的上下界限:λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤λ_i(H(A))+u_i(x)+δ'_i(i=1,n),λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤min{λ_i(H(A))+u_i(x),λ_(i-1)(H(A))}+δ'_i(2≤i≤n-1),且λ_(min)(-SH(A)τ)≤S(λ_i(A+xx'))≤λ_(max)(-SH(A)τ)(1≤i≤n),其中δ_i=sgn(‖SH(A)‖_2)[λ_(min)(H(A))-λ_(i-1)(H(A))-u_i(x)],δ'_i=sgn(‖SH(A)‖_2)[λ_(max)(H(A))-λ_i(H(A))-l_i(x)+‖x‖_2~2],gap_i=λ_(i-1)(A)-λ_i(A),i=2,…,n,H(A)和SH(A)分别代表矩阵A的Hermite部分和反Hermite部分,τ=(-1)~(1/2),sgn(·)代表符号函数.当A为Hermite矩阵时,上述结果退化为已有的结果λ_i(A)-‖x‖_2~2≤R(λ_i(A+xx'))≤λ_i(A)+‖x‖_2~2.  相似文献   

8.
王仁宏在[1]中提出了一些问题,其中之一是:对于二次连续可微的函数f(x)而言<以下记为f(x)∈C~2[-1,1]>,S_n(f,x),W_n(f,x),K_n(f,x)应该有什么样的渐近公式?这里S_n(f,x)是Hermite—Fejer插值多项式,W_n(f,x)是第二类拟Hermite—Fejer插值多项式,K_n(f,x)是GrünWald插值多项式.王在[2]中对以第一类Chebyshev多项式T_n(x)的零点为节点的S_n(f,x)对于f(x)∈c~2[-1,1],建立了渐近公式.本文讨论以第二类ChebyShev多项式U_n(x)的零点或者是以Legendre多项式P_n(x)的零点作为  相似文献   

9.
设f(x)∈C[-1,1],R_n[f(t);x]为具有第二类Chebyshev零点的Hermite—Fejer 插值多项式,则对一切x∈(-1,1),有如下估计式成立: 关于以第二类多项式U_n(x)的零点作为结点的Hermite—Fejer插值多项式对C[-1,1]类函数的渐近估计问题,已有不少人相继作了许多有价值的研究,其主要结果已综述在文[3]中。最近,王仁宏同本文的作者之一共同证得,当f′(x)∈Lipα(0<α<  相似文献   

10.
本文以文献[1—3]为基础,进一步讨论了用Hermite-Fejèr插值多项式逼近连续函数f(x)∈C[-1,1]的收敛阶问题。当,f′(x)∈C[-1,1]时,文中给出收敛阶的误差估计并且证明了这种估计对于某一连续函数类不可再改进。  相似文献   

11.
鉴于 L agrange插值多项式并非对任何的连续函数都能一致收敛 ,本文以 ( 1-x) Wn( x)的零点作为插值节点 ,对 L agrange插值多项式中的被插值函数进行线性组合 (也称函数平均 ) ,构造了算子 An,r( f;x) ,它对于有任意阶导数的连续函数 f ( x )∈ Cl[-1,1] ,( 0≤ l≤ r)都一致收敛 ,收敛阶为 |An,r( f ;x ) -f ( x ) |=O En( f ) 1nl ω( f (l) ,1n) 1nl 1且收敛阶达到了最佳 .( r是奇自然数 )  相似文献   

12.
本文讨论了以盖根堡多项武C_n~(λ)(x)的零点{x_k~(λ)}_k~n=1为基点的拟Hermite—Fejer插值多项式E_n~(λ)(f,x)的收敛性问题,证明当0≤λ≤1/2时,E_n~(λ)(f,x)在闭区间[-1,1]上一致收敛于连续函数f(x),部分地解决了P.Turan提出的一个问题。  相似文献   

13.
构造了一种组合型Grunwald插值多项式算子Hn(f;r,x),Hn(f;r,x)对每个连续函数在[-1,1]上都一致收敛于f(x),若f(x)∈C[-1,1],则Hn(f;r,x)的收敛阶达到最佳收敛阶。  相似文献   

14.
本文用扩充的 Hermite—Fejer 插值算子,逼近f(x)∈C′[-1,1]类函数,估计出插值过程的敛速。  相似文献   

15.
构造了一种组合型 Grünwald插值多项式算子 Hn( f ;r,x) ,Hn( f ;r,x)对每个连续函数在 [- 1 ,1 ]上都一致收敛于 f ( x) ,若 f ( x)∈ C[- 1,1] ,则 Hn( f ;r,x)的收敛阶达到最佳收敛阶 .  相似文献   

16.
证明了(0,p(D))三角插值多项式Rn(x)的s(s=0,1,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,…,q)阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα.0<α<1,若βk=Op(in)n(n)-f(s)(n)=Olnnnq+α,(k=0,1,2,…,n-1),则R(s)nq-s+α(s=0,1,…,q).  相似文献   

17.
(0,δM)三角插值多项式对函数及其导数的同时逼近   总被引:1,自引:0,他引:1  
证明了(0,δM)三角插值多项式L(M)n,ε (f,x)的s(s=0,1,2,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,2,…q) 阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα,0<α<1,若βk=O(|sinM(nh)|/nq+α)(k=0,1,2,…,n-1),则|[L(M)n,ε (f,x)](s)-f(s)(x)|=O(lnn/nq-s+α)(s=0,1,2,…,q).  相似文献   

18.
本文证明了 Burgers-BBM 方程 Cauchy 问题■u_t+udivu-β△u-δ△u_t=f(u,▽u)■|t=0=Φ(x),Φ(x)∈Ⅱ~s(p~■)(s>n/2+1)在 C([0,∞):Ⅱ~s(R~■)(s>n/2+1)中解的存在唯一性,并证明了解在‖·‖_■范数意义下在[0,T]上的稳定性.  相似文献   

19.
本文构造了两个切触有理插值逼近算子Hn(f;x)和Gn(f;x)。它们分别基于Hermite-Fejer插值多项式Hn(f;x)和Grunwald插值多项式Gn(f;x)。主要证明了当f∈c[-1,1]时,有|Hn(f;x)-f(x)|=0(1)Wr(1/n)(n≥2) |Gn(f;x)-f(x)|=0(1)Wr(1/n)(n≥2)其中Wr(δ)是f(x)的连续模。显然它们的逼近阶优于Hn(f;x)和Gn(f;x)的逼近阶[1]。  相似文献   

20.
1.假如f(x)∈L[0,2π],且在[0,2π]的子区间[a,b]上是连续的,那末我们写着f(x)∈L[0,2π]·C[a,b], ω_2(f,δ;a,b)= sup |f(x+h)+f(x-h)-2f(x)|.关于这类函数的富里埃级数f(x)~a_0/2+sum form n=1 to ∞(1/n)(a_n COS nx+b_n sin nx),Flett,Sunouchi等作者讨论了蔡查罗局部逼近问题。本文的目的是在详尽地讨论这个局部逼近问题,指出局部性与整体性的差别,并且解决了局部饱和问题。我们建立两个定理。定理1.设f(x)∈L[0,2π],ω_2(f, δ;a,b)=O(δ~β),f(x)的富里埃系数a_n,b_n=O(n~(a-β)).则(i)当0<β<1时,在[α+2ε,b-2ε]中均匀地成立着σ_n~α(f;x)-f(x)=O(n~(-β));(ii)当β=1时,f′(x)在[a,b]中是有界的话,在[a+2ε,b-2ε」中均匀地成立着  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号