首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In October 1924, The Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Using Bohr’s correspondence principle and Einstein’s quantum theory of radiation along with advanced techniques from classical mechanics, Van Vleck showed that quantum formulae for emission, absorption, and dispersion of radiation merge with their classical counterparts in the limit of high quantum numbers. For modern readers Van Vleck’s paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg’s Umdeutung paper. This makes Van Vleck’s paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself. This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin.  相似文献   

2.
Adriaan van Roomen published an outline of what he called a Mathesis Universalis in 1597. This earned him a well-deserved place in the history of early modern ideas about a universal mathematics which was intended to encompass both geometry and arithmetic and to provide general rules valid for operations involving numbers, geometrical magnitudes, and all other quantities amenable to measurement and calculation. ‘Mathesis Universalis’ (MU) became the most common (though not the only) term for mathematical theories developed with that aim. At some time around 1600 van Roomen composed a new version of his MU, considerably different from the earlier one. This second version was never effectively published and it has not been discussed in detail in the secondary literature before. The text has, however, survived and the two versions are presented and compared in the present article. Sections 1–6 are about the first version of van Roomen’s MU the occasion of its publication (a controversy about Archimedes’ treatise on the circle, Sect. 2), its conceptual context (Sect. 3), its structure (with an overview of its definitions, axioms, and theorems) and its dependence on Clavius’ use of numbers in dealing with both rational and irrational ratios (Sect. 4), the geometrical interpretation of arithmetical operations multiplication and division (Sect. 5), and an analysis of its content in modern terms. In his second version of a MU van Roomen took algebra into account, inspired by Viète’s early treatises; he planned to publish it as part of a new edition of Al-Khwarizmi’s treatise on algebra (Sect. 7). Section 8 describes the conceptual background and the difficulties involved in the merging of algebra and geometry; Sect. 9 summarizes and analyzes the definitions, axioms and theorems of the second version, noting the differences with the first version and tracing the influence of Viète. Section 10 deals with the influence of van Roomen on later discussions of MU, and briefly sketches Descartes’ ideas about MU as expressed in the latter’s Regulae.  相似文献   

3.
In the Planetary Hypotheses, Ptolemy summarizes the planetary models that he discusses in great detail in the Almagest, but he changes the mean motions to account for more prolonged comparison of observations. He gives the mean motions in two different forms: first, in terms of ‘simple, unmixed’ periods and next, in terms of ‘particular, complex’ periods, which are approximations to linear combinations of the simple periods. As a consequence, all of the epoch values for the Moon and the planets are different at era Philip. This is in part a consequence of the changes in the mean motions and in part due to changes in Ptolemy’s time in the anomaly, but not the longitude or latitude, of the Moon, the mean longitude of Saturn and Jupiter, but not Mars, and the anomaly of Venus and Mercury, the former a large change, the latter a small one. The pattern of parameter changes we see suggests that the analyses that yielded the Planetary Hypotheses parameters were not the elegant trio analyses of the Almagest but some sort of serial determinations of the parameters based on sequences of independent observations.  相似文献   

4.
In Proposition 10, Book 2 of the Principia, Newton applied his geometrical calculus and power series expansion to calculate motion in a resistive medium under the action of gravity. In the first edition of the Principia, however, he made an error in his treatment which lead to a faulty solution that was noticed by Johann Bernoulli and communicated to him while the second edition was already at the printer. This episode has been discussed in the past, and the source of Newton’s initial error, which Bernoulli was unable to find, has been clarified by Lagrange and is reviewed here. But there are also problems in Newton’s corrected version in the second edition of the Principia that have been ignored in the past, which are discussed in detail here.  相似文献   

5.
Three problems in book I of Diophantus’ Arithmetica contain the adjective plasmatikon, that appears to qualify an implicit reference to some theorems in Elements, book II. The translation and meaning of the adjective sparked a long-lasting controversy that has become a nonnegligible aspect of the debate about the possibility of interpreting Diophantus’ approach and, more generally, Greek mathematics in algebraic terms. The correct interpretation of the word, a technical term in the Greek rhetorical tradition that perfectly fits the context in which it is inserted in the Arithmetica, entails that Diophantus’ text contained no (implicit) reference to Euclid’s Elements. The clause containing the adjective turns out to be a later interpolation, that cannot be used to support any algebraic interpretation of the Arithmetica.  相似文献   

6.
C.F Gauss’s computational work in number theory attracted renewed interest in the twentieth century due to, on the one hand, the edition of Gauss’s Werke, and, on the other hand, the birth of the digital electronic computer. The involvement of the U.S. American mathematicians Derrick Henry Lehmer and Daniel Shanks with Gauss’s work is analysed, especially their continuation of work on topics as arccotangents, factors of n 2 + a 2, composition of binary quadratic forms. In general, this strand in Gauss’s reception is part of a more general phenomenon, i.e. the influence of the computer on mathematics and one of its effects, the reappraisal of mathematical exploration. I would like to thank the Alexander-von-Humboldt-Stiftung for funding this research. For their comments I would like to thank Catherine Goldstein, Norbert Schappacher and especially John Brillhart.  相似文献   

7.
8.
In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924–1925. Although it failed to attract the attention of Einstein’s contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein’s quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein’s confusion with his initial success in extending Bose’s results and in realizing the consequences of what later came to be called Bose–Einstein statistics. We discuss Einstein’s motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein’s belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well known to Einstein from earlier work on Wien’s displacement law, Planck’s radiation theory and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.  相似文献   

9.
Summary A new observation on theH. halobium cells is reported. It has been observed that when the cells are exposed to light a volume flow is observed through them. The magnitude of the light-induced volume flow depends on the intensity and wavelength of the exciting light and is also influenced by temperature. The phenomenon appears to be relevant to the physiology of the organism.Acknowledgment. Thanks are due to the Council of Scientific and Industrial Research, New Dehli for financial support and to Dr Th. Schreckenbach of Max Planck Institute of Biochemistry, Germany for his gift of a sample ofHalobacterium halobium S9 strain.  相似文献   

10.
In this paper we examine the reaction of the Leiden low-temperature laboratory of Heike Kamerlingh Onnes to new ideas in quantum theory. Especially the contributions of Albert Einstein (1906) and Peter Debye (1912) to the theory of specific heat, and the concept of zero-point energy formulated by Max Planck in 1911, gave a boost to solid state research to test these theories. In the case of specific heat measurements, Kamerlingh Onnes's laboratory faced stiff competition from Walter Nernst's Institute of Physical Chemistry in Berlin. In fact, Berlin got the better of it because Leiden lacked focus. After the liquefaction of helium in 1908, Kamerlingh Onnes transformed his laboratory into an international facility for low temperature research, and for this reason it was impossible to make headway with the specific heat measurements. In the case of zero-point energy, Leiden developed a magnetic research programme to test the concept. Initially the balance of evidence seemed to be tipping in favour of zero-point energy. After 1914, however, Leiden would desert the theory in fovour, of a concept from calssical physics. A curious move that illustrates Kamerlingh Onnes's discomfort with the new quantum theory.  相似文献   

11.
12.
This study is the foundation of a new interpretation of the introduction and the three first books of Diophantus’s Arithmetica, one that opens the way to a historically correct contextualization of the work. Its purpose, as indicated in the title, is to renew the traditional discussion on the methods of problem-solving used by Diophantus, through the detailed exposition of a new analytical framework that aims to give an account of the coherence and progressive nature of the material included in the three first books of the Arithmetica. One outcome of this new ‘toolbox’ is a new conspectus of the problems and solutions contained in the latter, which is presented in appendix. The first part of the article clarifies, as a necessary preliminary, the key notions and terminology underlying our analysis. Among these new concepts is the notion of “method of invention,” which accounts in general for any way, by which “positions” (hypostaseis) are used in the Arithmetica. The next part proposes a complete inventory of the various methods of invention found in the three first books. Finally the last part presents the above mentioned conspectus and proposes a series of preliminary conclusions that can be drawn from it.  相似文献   

13.
In early 1925, Wolfgang Pauli (1900–1958) published the paper for which he is now most famous and for which he received the Nobel Prize in 1945. The paper detailed what we now know as his “exclusion principle.” This essay situates the work leading up to Pauli's principle within the traditions of the “Sommerfeld School,” led by Munich University's renowned theorist and teacher, Arnold Sommerfeld (1868–1951). Offering a substantial corrective to previous accounts of the birth of quantum mechanics, which have tended to sideline Sommerfeld's work, it is suggested here that both the method and the content of Pauli's paper drew substantially on the work of the Sommerfeld School in the early 1920s. Part One describes Sommerfeld's turn away from a faith in the power of model-based (modellmässig) methods in his early career towards the use of a more phenomenological emphasis on empirical regularities (Gesetzmässigkeiten) during precisely the period that both Pauli and Werner Heisenberg (1901–1976), among others, were his students. Part two delineates the importance of Sommerfeld's phenomenology to Pauli's methods in the exclusion principle paper, a paper that also eschewed modellmässig approaches in favour of a stress on Gesetzmässigkeiten. In terms of content, a focus on Sommerfeld's work reveals the roots of Pauli's understanding of the fundamental Zweideutigkeit (ambiguity) involving the quantum number of electrons within the atom. The conclusion points to the significance of these results to an improved historical understanding of the origin of aspects of Heisenberg's 1925 paper on the “Quantum-theoretical Reformulation (Umdeutung) of Kinematical and Mechanical Relations.”  相似文献   

14.
This paper is a contribution to our understanding of the constructive nature of Greek geometry. By studying the role of constructive processes in Theodoius’s Spherics, we uncover a difference in the function of constructions and problems in the deductive framework of Greek mathematics. In particular, we show that geometric problems originated in the practical issues involved in actually making diagrams, whereas constructions are abstractions of these processes that are used to introduce objects not given at the outset, so that their properties can be used in the argument. We conclude by discussing, more generally, ancient Greek interests in the practical methods of producing diagrams.  相似文献   

15.
This article analyzes the method of orienting a gnomon developed by the eleventh century Chinese scientist Shen Kuo and described in his Ying Biao Yi. I argue that Shen Kuo’s criticism of the traditional orientation method was built on his belief that the earth is flat. The method Shen Kuo presented aims first to find the center of the earth, and only then to orient the gnomon to the cardinal directions. In addition, Shen Kuo developed two new techniques for improving observation with a gnomon: the first method sets the gnomon in a closed chamber with only a small slit for the entrance of the noon sunlight, thereby reducing ambient light and making it easier to see the gnomon’s shadow. Shen’s other innovation is to use a second gnomon together with the first. This can greatly weaken the shadow’s penumbra.  相似文献   

16.
In a previous paper [Hemmo, M & Shenker, O (2003). Quantum decoherence and the approach to equilibrium I. Philosophy of Science, 70, 330–358] we discussed a recent proposal by Albert [(2000). Time and chance. Cambridge, MA: Harvard University Press. Chapter 7] to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the quantum state of [Ghirardi, G, Rimini, A and Weber, T., (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review, D 34, 470–479]. We proposed an alternative way to explain thermodynamics within no collapse interpretations of quantum mechanics. In this paper some difficulties faced by both approaches are discussed and solved: the spin echo experiments, and the problem of extremely light gases. In these contexts, we point out several ways in which the above quantum mechanical approaches as well as some other classical approaches to the foundations of statistical mechanics may be distinguished experimentally.  相似文献   

17.
The widely accepted supposition that Newton’s De gravitatione was written in 1684/5 just before composing the Principia is examined. The basis for this determination has serious difficulties starting with the failure to examine the numerical estimates for the resistance of aether. The estimated range is not nearly nil as claimed but comparable with air at or near the earth’s surface. Moreover, the evidence provided most likely stems from experiments by Boyle, Hooke, and others in the 1660s and does not use evidence available in the late 1684. The document supports Newton’s contention that the aether medium incorporates very large voids thereby proving that body and space differ but does by no means completely reject its corporeal nature or eliminate its resistance. Newton’s use of the term inertia provides no conclusive evidence for a late date as often claimed and his definition of gravitas is difficult to reconcile with a late one.  相似文献   

18.
19.
We present and discuss an interesting and puzzling problem Ehrenfest found in his first application of the adiabatic hypothesis, in 1913. It arose when trying to extend Planck׳s quantization of the energy of harmonic oscillators to a rotating dipole within the frame of the old quantum theory. Such an extension seemed to lead unavoidably to half-integral values for the rotational angular momentum of a system (in units of ℏ). We present the problem in its original form along with the (few) responses we have found to Ehrenfest׳s treatment. After giving a brief account of the classical and quantum adiabatic theorem, we also describe how Quantum Mechanics provides an explanation for this difficulty.  相似文献   

20.
Historical work on the emergence of sheaf theory has mainly concentrated on the topological origins of sheaf cohomology in the period from 1945 to 1950 and on subsequent developments. However, a shift of emphasis both in time-scale and disciplinary context can help gain new insight into the emergence of the sheaf concept. This paper concentrates on Henri Cartan’s work in the theory of analytic functions of several complex variables and the strikingly different roles it played at two stages of the emergence of sheaf theory: the definition of a new structure and formulation of a new research programme in 1940–1944; the unexpected integration into sheaf cohomology in 1951–1952. In order to bring this two-stage structural transition into perspective, we will concentrate more specifically on a family of problems, the so-called Cousin problems, from Poincaré (1883) to Cartan. This medium-term narrative provides insight into two more general issues in the history of contemporary mathematics. First, we will focus on the use of problems in theory-making. Second, the history of the design of structures in geometrically flavoured contexts—such as for the sheaf and fibre-bundle structures—which will help provide a more comprehensive view of the structuralist moment, a moment whose algebraic component has so far been the main focus for historical work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号