首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当前水体氨氮污染严重,环境治理迫在眉睫,筛选高效安全的脱氮菌株可为废水脱氮提供更多选择。本研究从沼气发酵污泥中分离筛选能降解氨氮的菌株,使用18S rDNA序列分析,对筛选出的优良菌株进行种类鉴定;同时采用单因素试验和正交试验,探究菌株最佳脱氮条件[培养温度、初始pH值、盐浓度、碳氮比(C/N)]及其硝化、反硝化能力。结果表明,分离筛选得到1株具有较强脱氮能力的野生型毕赤酵母(Pichia sp.)菌株Y-4。在试验优化后,得到菌株Y-4的最适脱氮条件:培养温度25℃,初始pH值8.0、盐浓度(氯化钠浓度)30 g/L、C/N为30。在培养24 h后菌株Y-4对亚硝酸氮(NO2--N)的降解率为80.50%,在培养48 h后菌株Y-4对氨氮(NH4+-N)的降解率达99.92%,且在24 h内菌株Y-4的异养硝化和好氧反硝化的速率分别达到6.25和6.71 mg/(L·h),表明毕赤酵母菌株Y-4对废水氮污染处理以及生物修复具有一定的应用价值与潜力。  相似文献   

2.
从膜生物反应器中分离出一株异养型高效脱氮细菌,该菌为革兰氏阴性杆菌,命名为HNR.经16S rRNA测序,该菌株属于Acinetobactersp.菌属.以氯化铵为惟一氮源,探讨了不同碳源、pH值、温度及碳与氮质量分数之比w(C/N)对HNR菌株脱氮性能的影响.实验结果表明:以葡萄糖为碳源、pH值为8、温度为30℃、w(C/N)为10时,HNR具有最佳脱氮效果.在好氧条件下,当氨氮初始质量浓度为120 mg/L时,经过72 h的连续培养,其氨氮和总氮的去除率分别达92.5%和89.1%.通过气相色谱能检测到N2,但检测不到N2O.HNR不具有明显的好氧反硝化性能,表明HNR的脱氮途径可能与已报道过的异养硝化好氧反硝化脱氮途径有所不同.  相似文献   

3.
从冬季污水处理厂活性污泥中筛选出一株在低温及好氧条件下具有脱氮除磷功能的菌株,经16Sr DNA序列分析鉴定为不动杆菌,命名为Acinetobactersp.Z1.在10℃条件下探究菌株Z1的脱氮除磷性能及氮磷转化途径.结果表明,菌株Z1能够利用NH4+-N或NO3--N为唯一氮源,以及NH4+-N和NO3--N为混合氮源进行脱氮除磷.菌株Z1在碳源为乙酸钠,m(COD)/m(N)≥20,m(P)/m(N)=0.2,中性或弱碱性溶液中,摇床转速n≥100r/min的条件下具有良好的氮磷去除效果,NH4+-N和PO43--P最大去除率可分别达96.0%和97.9%.菌株Z1的氮转化途径主要是同化,同时也能通过异养硝化-好氧反硝化作用脱氮.菌株Z1可以在好氧条件下除磷,在厌氧条件下不释放磷.实验结果表明菌株Z1在低温条件下具有良好...  相似文献   

4.
为改善强碱环境下微生物脱氮效率低下的问题,从上海市稻田土壤中分离出一株具有强碱适应能力的好氧反硝化菌。经细胞形态学观察及16S rDNA分析,鉴定其为琼氏不动杆菌(Acinetobacter junii),并命名为琼氏不动杆菌5-2。结合单因素影响试验考察该菌株在不同环境条件下的脱氮效果,发现其在一定pH值(7.0~12.0)及盐质量浓度范围(10~30 g/L)内,均能保持较高的硝氮去除率(>90%)。在以乙酸钠为碳源、硝酸钾为氮源、碳氮质量比(m(C)/m(N))值为12、温度为35℃、转速为90 r/min、初始pH值为10.0、初始硝氮质量浓度为41.07 mg/L的条件下培养120 h后,该菌株对硝氮及总氮的去除率分别为97.83%及65.85%,同时,对该菌株好氧反硝化相关酶活性及基因进行检测。研究结果表明,琼氏不动杆菌5-2具有高效好氧反硝化能力,有望应用于处理实际含氮废水。  相似文献   

5.
从螺旋升流式SUFR-UCT系统好氧反应器的活性污泥中分离得到一株好氧反硝化菌Y4,经16S rDNA系列相似性比较和系统发育分析初步鉴定属于Gordonia.sp(戈登氏菌属)。对菌株Y4反硝化能力进行试验研究,结果表明菌株Y4可以在好氧条件下有效去除培养液中的硝酸盐氮,在初始硝酸盐氮质量浓度为286 mg/L时,48 h脱氮效率可达61.2%。另外试验考察了溶解氧和温度对菌株Y4反硝化效果的影响,结果显示Y4有较高的氧耐受力,在DO为2~11.8 mg/L时都可保持较高的脱氮率;菌株Y4对温度适应性强,在30 ℃时脱氮效率高达90%。试验证明在螺旋升流式SUFR-UCT系统中存在有较好反硝化性能的好氧反硝化菌。  相似文献   

6.
通过接种某污水处理厂循环活性污泥工艺(cyclic sludge system, CASS)反应池出口活性污泥到培养基,经过对污泥驯化从中分离出1株低温好氧反硝化菌IL-2,温度4℃.对IL-2菌进行常规的生理生化鉴定和16S rDNA测序,鉴定出IL-2菌为Pseudomonas属.考察了不同C/N质量浓度比、温度、溶解氧、接种量、处理时间对菌株IL-2反硝化脱氮效果的研究.随着C/N质量浓度比、处理时间、溶解氧的不断增加,菌株IL-2的脱氮效果逐渐增强;随着温度和接种量的不断增加,菌株IL-2的脱氮效果先逐渐增强后减弱.该菌株在初始硝态氮质量浓度为20 mg/L,C/N质量浓度比为10,温度为4℃,溶解氧为3.5 mg/L,接种量所占体积为30%,处理10 h的条件下硝态氮的去除效果最好,为95.95%.该菌株主要适用于冬季温度较低的市政污水的处理.  相似文献   

7.
以筛选分离得到的好氧反硝化菌HG-7为研究对象, 经过16S rRNA同源性分析, 初步鉴定该菌株为假单胞菌属(Pseudomonas sp.)。对菌株HG-7反硝化功能基因的扩增结果表明, 菌体HG-7内存在好氧反硝化功能基因napA和nirK, 证实该细菌为好氧反硝化细菌。对菌株的脱氮特性和影响因素的研究表明, 以硝酸盐氮为氮源时, 菌株的最适碳源为乙酸钠和丁二酸钠, 最佳C/N比为6~10, 最适宜的温度范围为26~30℃。在上述条件下, 菌株HG-7的好氧反硝化活性较高, 48小时内对100 mg/L硝酸盐氮的去除率可达98%, 且在反应过程中亚硝酸盐氮积累量较低。以亚硝酸氮为唯一氮源时, 低浓度条件下可实现100%的氮素去除率; 高浓度条件下, 脱氮速率则受到明显的抑制, 对91.4 mg/L的亚硝酸盐氮氮去除率约为40%。因此, 将该菌株应用于废水的脱氮处理, 可实现氮素的有效去除, 具有潜在的应用价值。  相似文献   

8.
从活性污泥中分离出一株好氧耐盐反硝化菌YFX-6,耐盐度10%.经生理生化鉴定和16S rDNA测序,鉴定出菌株YFX-6属于Halomonas sp.考察了不同C/N质量浓度比、溶解氧、接种量、处理时间对菌株YFX-6在粮果实际废水中反硝化脱氮效果的研究.随着C/N质量浓度比的不断增加,菌株YFX-6的反硝化脱氮效果先逐渐增强后又减弱;随着溶解氧、处理时间和接种量的不断增加,菌株YFX-6的脱氮效果逐渐增强后趋于稳定.初始硝态氮质量浓度约为108.5 mg/L,氯化钠质量浓度为10 mg/L,C/N质量浓度比为8,溶解氧为3.5 mg/L,接种量所占体积分数为20%,处理16 h时,硝态氮去除率为98.69%.因此,筛选出的一株好养耐盐的异氧反硝化菌可以在上述条件下表现出良好的脱氮性能.  相似文献   

9.
从水产养殖生物絮团中分离出一株具有异养硝化-好氧反硝化功能的菌株L3,研究该菌株的生长影响因子及其脱氮性能.对菌株L3进行16 S rRNA基因同源性分析,表明此株菌为假单胞菌.研究表明,菌株L3生长的最佳pH为6~8,最佳温度范围为25~35℃,最适宜碳源为丁二酸钠,最佳C/N为10~15,且菌株能耐受高浓度氨氮负荷...  相似文献   

10.
一株异养硝化菌的筛选及其脱氮条件   总被引:8,自引:0,他引:8  
从生活污水生物脱氮除磷装置中分离到一株脱氮效果较好的异养硝化菌株,脱氮过程中无亚硝酸盐氮积累质量,只有少量硝酸盐氮积累.在实验室条件下,初步探讨了不同温度、pH值、摇床转速、碳氮比、氨氮质量浓度对YY4菌株脱氮作用的影响.研究结果显示:温度为30℃、pH值为9.0、摇床转速150r/min、m(C)/m(N)为10、氨氮质量浓度为100mg/L时,YY4菌株具有最佳的脱氮效果.应用该菌株对宜兴生活污水和南京某化工厂废水氨氮脱除效果的结果显示,去除率分别为89.54%(9h)和95.79%(36h).  相似文献   

11.
高效异养硝化-好氧反硝化菌株的分离鉴定与脱氮性能   总被引:7,自引:0,他引:7  
利用BTB培养基从实验室驯化成熟的SBR反应器的活性污泥中筛选出一株高效异养硝化-好氧反硝化菌株WYLW-X06.通过对菌株WYLW-X06的形态观察、生理生化特征测定、Biolog鉴定,以及16S rDNA序列测定,认定菌株WYLW-X06是蜡状芽孢杆菌(Bacillus cereus).对菌株脱氮性能的研究结果表明:该菌株脱氮效果良好,氨氮去除率达到97.18%,总氮去除率96.63%,N2O气体总产量1.848 987 mg,N2O-N产量占总氮去除量的0.572%.  相似文献   

12.
从活性污泥中驯化、筛选并分离出1株能有效去除氨氮的菌株LX 1-3,经过形态学与分子生物学鉴定该菌株为副球菌属(Paracouccus sp),NCBI Gen Bank登录号为MH156598.对该菌株进行反硝化性能测试,结果表明该菌培养的最适条件为30℃,最适p H值为7. 0~7. 3,48 h后脱氮率为30. 7%.将该菌与1株高耐盐季也蒙毕赤酵母(KX447139)搭配,脱氮效率有显著提高.在好氧条件下,按照好氧反硝化菌与高效耐盐菌1∶1的接菌量配比接入污水中,30℃反应48 h后,氨氮去除率为86. 36%.该研究为提高污水脱氮处理效率提供了有效的方法.  相似文献   

13.
采用改良而成的OGO工艺技术,以试验配水模拟城市生活污水,研究了OGO系统的脱氮效果,通过分析反应器各反应区的脱氮效果,并结合OGO系统脱氮效果观察系统中活性污泥絮体特性,研究分析了OGO系统的脱氮机理.试验结果表明,在进水总氮(TN)和氨氮(NH4 -N)分别为31.15~42.26 mg/L和27.53~38.58 mg/L的条件下,OGO系统对总氮和氨氮的平均去除率分别可达74.31%和83.75%.反应器外环脱氮方式为同时硝化反硝化(SND)脱氮,其脱氮量占反应器脱氮总量的80.48%,OGO工艺对氮素的生物去除绝大部分是通过同时硝化反硝化来实现的;同时硝化反硝化的宏观分区理论和微环境理论均适用于OGO系统.  相似文献   

14.
1株异养硝化-好氧反硝化菌的分离鉴定及脱氮活性   总被引:3,自引:0,他引:3  
从养殖池塘底泥中分离出1株异养硝化-好氧反硝化菌,对其进行生理生化鉴定、最佳脱氮条件确定及与活性污泥共同作用下的脱氮性能研究.经过菌株生理生化特性鉴定及查伯杰氏手册确定该菌株为非发酵、无芽孢的革兰阴性菌,初步鉴定为不动杆菌,且同时具有硝化和反硝化的特性.利用正交试验研究其脱氮性能的影响因素和最佳条件,结果表明:在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为8,转速为75 r/min的培养条件下,该菌株对TN的降解效果最佳,降解率为98%;在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为6.5,转速为120 r/min的培养条件下,该菌株对COD的降解效果最佳,降解率为99%.在对实际污水的脱氮处理中,该菌株脱氮性能很强并可加强活性污泥的脱氮性能,具有一定的实用性.  相似文献   

15.
从水库底泥中分离出1株氢自养反硝化细菌SY6.以氢自养反硝化菌株SY6作为研究对象,分析了氢气作为电子供体时,氢自养反硝化细菌SY6生物脱氮途径及生长增殖规律,考察了不同环境因子对菌株SY6生物脱氮性能的影响.结果表明,30℃时菌株反硝化效率最高,此时NO-3的去除率达到100%;在p H值为6—7的中性偏酸环境,菌株反硝化效果最好,NO-3的去除率为100%.不同的C/N对反硝化效果的影响很小,以Na HCO3作为碳源反硝化效果优于以CO2作为碳源.  相似文献   

16.
复合脱氮菌群的构建及其脱氮特性研究   总被引:4,自引:0,他引:4  
利用筛选得到的5株性能良好的异养硝化-好氧反硝化菌,采用两两组合方式,构建出了优于单一菌株脱氮活性的复合菌群F1.研究了该复合菌群的生长曲线,探讨了盐度对复合菌群F1的脱氮性能的影响.研究表明:复合菌群F1在盐度2.0%,3.5%的条件下均能生长.在盐度0,2.0%,3.5%的条件下,NH4+-N和TN去除率在48,84,96 h时均达到80%以上,值得一提的是,复合菌群F1在盐度2.0%时,NH4+-N和TN去除率仍很高,均在94%以上.复合菌群F1在处理实际味精废水方面具较高应用价值.  相似文献   

17.
国内外对细菌的作用及作用机制研究较多,而对真菌的作用及机制研究较少.为了提高NO,NO_x的脱除效率,本文对脱氮塔生物膜中的反硝化真菌进行了分离、纯化及鉴定,通过摇瓶实验研究了反硝化真菌对NO_3~-的作用特征,最后在脱氮塔中投加了分离的反硝化真菌纯菌株扩大培养液,研究了其对NO_x脱除效率的影响,还对脱氮塔内真菌的群落结构进行了高通量测序分析.实验结果表明:经过真菌形态特征和脱氮(NO_3~-)特性研究及ITS序列测定分析,将3LNB菌株鉴定为镰刀菌的腐皮镰刀菌Fusarium solani.高通量测序分析结果证明了脱氮塔内确实存在镰刀菌属的腐皮镰刀菌Fusarium solani.在NO_3~-—N浓度高达10.01g/L的条件下,实验共10d,细菌反硝化组反硝化率为5.6%,其脱除效率为0.56g/L;真菌3LNB菌株的反硝化率能达到15.1%,其脱除效率为1.51g/L.实验室实验证明3LNB菌株对NO_3~-具有较强的反硝化能力.将3LNB纯菌株扩大培养液400mL(4%)投加到脱氮塔中,NO,NO_x的平均脱除率分别提高了5.12%,5.36%.脱氮塔净化实验证明3LNB培养液能强化微生物对NO,NO_x的脱除效能,这可能主要与腐皮镰刀菌等真菌细胞存在细胞色素P450nor有关.  相似文献   

18.
亚硝酸盐反硝化脱氮   总被引:3,自引:0,他引:3  
利用单纯形优化法获得了从亚硝酸盐反硝化脱氮的工艺条件为 :pH8.3,温度 2 8℃ ,C/N比1.6 ,泥 /水比为 0 .32 ,在此条件下能够稳定、高效地处理高浓度的含氮废水 (NO2 - -N〈35 0mg·L- 1) ,其脱氮速率高达 16 2mg·L- 1·h- 1,脱氮率 >99%。  相似文献   

19.
采用SBR反应器,以硝酸钾为氮源驯化活性污泥,筛选分离出两株好氧反硝化菌X1和X2进行生理特性、脱氮性能及N2O逸出量的研究.结果表明:两菌株均能在完全好氧的条件下(DO2mg/L),利用KNO3进行反硝化,总无机氮去除率分别为72.1%和78.9%;以KNO2为氮源时,菌株X1的总无机氮去除率仅为16%,而菌株X2的总无机氮去除率则达到73%;好氧反硝化过程中菌株X1的N2O逸出量高于菌株X2,这与硝酸盐的积累相关;碳源种类对菌株N2O逸出量有较大影响,琥珀酸钠做碳源时N2O逸出量最高.  相似文献   

20.
从天津北运河沉积物中分离得到3株以亚硝酸氮(NO-2-N)为氮源的异养硝化菌HN4、HN5和HN6.对3菌株降解NO-2-N与总有机碳(TOC)能力进行了研究.结果表明,3菌株富集培养期内降解NO-2-N与TOC效率均在60%以上,富集培养期间NO-2-N含量变化和TOC含量变化高度相关,3株异养硝化菌能在进行脱氮作用的同时利用有机碳.以细菌16S rDNA序列和真菌ITS序列进行分子生物学鉴定,初步认定HN4为Shigella,HN5和HN6为Candida palmioleophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号