首页 | 本学科首页   官方微博 | 高级检索  
     

一种稳健的目标提取与跟踪算法
引用本文:杨晓辉,李中科,吴乐南. 一种稳健的目标提取与跟踪算法[J]. 应用科学学报, 2005, 23(1): 31-36
作者姓名:杨晓辉  李中科  吴乐南
作者单位:东南大学无线电工程系, 江苏南京 210096
摘    要:融合了GVF-Snakes算法与基于细粒度的遗传算法,提出了一种稳健的目标轮廓提取与跟踪算法.该算法通过使用边界约束替代能量计算改进了GVF-Snakes算法,降低了算法计算复杂度,提高了它的搜索速度;另外,通过引用细粒度遗传算法来筛选控制点序列,提高了算法对极端凹陷边缘和噪声干扰轮廓的提取能力.通过合成和自然图像的目标轮廓提取和跟踪实验,证明了本文提出的算法具有鲁棒性和精确性.

关 键 词:活动轮廓  遗传算法  细粒度模型  GVF-Snakes  
文章编号:0255-8297(2005)01-0031-06
收稿时间:2003-10-31
修稿时间:2003-12-31

A Robust Scheme for Contour Extracting and Tracking
YANG Xiao-hui,LI Zhong-ke,WU Le-nan. A Robust Scheme for Contour Extracting and Tracking[J]. Journal of Applied Sciences, 2005, 23(1): 31-36
Authors:YANG Xiao-hui  LI Zhong-ke  WU Le-nan
Affiliation:Department of Radio Engineering, Southeast University, Nanjing 210096, China
Abstract:A new scheme is proposed to extract and track the object contour automatically in this paper, it combines the active contour based on the gradient vector flow( GVF-Snakes) and the genetic algorithm (GA) based on the fine-grained model. On the one hand, the GVF-Snakes is improved by using the edge criterion instead of the complex energy computation to reduce its complexity and speed up its search. On the other hand, the selection of the array of the reference points by the GA enhances the extracting performance of the extreme concave contours and noise-disturbing contours. Experiment on the synthetic and natural images demonstrate its robustness and accuracy.
Keywords:GVF-Snakes  active contour  genetic algorithm  fine-grained model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号