首页 | 本学科首页   官方微博 | 高级检索  
     

一种区域统计信息的格子波尔兹曼图像分割模型
引用本文:温军玲,严壮志,蒋皆恢. 一种区域统计信息的格子波尔兹曼图像分割模型[J]. 应用科学学报, 2016, 34(1): 49-57. DOI: 10.3969/j.issn.0255-8297.2016.01.006
作者姓名:温军玲  严壮志  蒋皆恢
作者单位:1. 上海大学通信与信息工程学院, 上海 200444;2. 上海大学生物医学工程研究所, 上海 200444
基金项目:国家自然科学基金(No.61171146);上海市科学技术委员会基金(No.13DZ1941203,No.15441905400)资助
摘    要:格子波尔兹曼(lattice Boltzmann, LB)分割模型具有算法简单、运算快捷的优点,但对于低对比度和受到噪声污染的图像,经常产生欠分割或者过分割现象.为此,引入图像局部区域统计信息,构建了一种新的格子波尔兹曼图像分割模型.为验证该模型及算法的分割性能,在相似性系数和豪斯多夫距离等评价技术指标下,利用真实脑磁共振图像作为实验数据进行分割,并与现有LB分割模型以及水平集分割模型进行对比.实验结果表明,该模型在分割精度方面比现有LB模型提高10倍,在计算速度方面比传统水平集分割模型提高3倍.

关 键 词:图像分割  脑磁共振图像  格子波尔兹曼模型  水平集方法  
收稿时间:2015-08-31
修稿时间:2015-10-11

A Lattice Boltzmann Model with Statistic Region Information for Image Segmentation
WEN Jun-ling,YAN Zhuang-zhi,JIANG Jie-hui. A Lattice Boltzmann Model with Statistic Region Information for Image Segmentation[J]. Journal of Applied Sciences, 2016, 34(1): 49-57. DOI: 10.3969/j.issn.0255-8297.2016.01.006
Authors:WEN Jun-ling  YAN Zhuang-zhi  JIANG Jie-hui
Affiliation:1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;2. Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
Abstract:The lattice Boltzmann (LB) model has advantages of simple programming and faster operation, but for images with low contrast and noise, segmentation may fail. This paper proposes a novel LB model using local statistical region information. As the method can enhance contrast of the object and background, and reduce noise, it provides improved delineation accuracy. To verify effectiveness of the model, comparison experiments among the existing LB model, level set models and the proposed model are made, using real magnetic resonance (MR) images. Dice coefficient and Hausdorf distance are used as the measurement index. The results show that the proposed model produces segmentation results with precision 10 times better than the existing LB method. In addition, the computing speed is 3 times faster than level set models.
Keywords:image segmentation  brain magnetic resonance image  lattice Boltzmann model  level set method  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号