首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯估计噪声相关下的CKF设计
引用本文:钱华明,葛磊,黄蔚,刘璇. 基于贝叶斯估计噪声相关下的CKF设计[J]. 系统工程与电子技术, 2012, 34(11): 2214-2218. DOI: 10.3969/j.issn.1001-506X.2012.11.05
作者姓名:钱华明  葛磊  黄蔚  刘璇
作者单位:1.哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001;2.黑龙江科技学院电气与信息工程学院, 黑龙江 哈尔滨 150029
基金项目:国家自然科学基金(61104036)资助课题
摘    要:
针对常规容积卡尔曼滤波(cubature Kalman filter, CKF)要求系统噪声和量测噪声必须互不相关的局限性,提出了一种带相关噪声的非线性离散系统CKF设计方法。基于贝叶斯估计准则,给出了系统噪声和量测噪声相关时CKF滤波递推公式,并采用三阶球面-相径容积规则来近似计算系统状态的后验均值和协方差。当系统噪声和量测噪声相关时,常规CKF不适用,本文设计的噪声相关下的CKF可以有效地对状态进行估计,拓展了CKF的应用范围。数值仿真验证了算法的有效性。

关 键 词:非线性高斯系统  噪声相关的容积卡尔曼滤波  贝叶斯估计  三阶球面-相径容积规则

Design of CKF with correlative noises based on Bayesian estimation
QIAN Hua-ming , GE Lei , HUANG Wei , LIU Xuan. Design of CKF with correlative noises based on Bayesian estimation[J]. System Engineering and Electronics, 2012, 34(11): 2214-2218. DOI: 10.3969/j.issn.1001-506X.2012.11.05
Authors:QIAN Hua-ming    GE Lei    HUANG Wei    LIU Xuan
Affiliation:1. College of Automation, Harbin Engineering University, Harbin 150001, China;2. College of Electrical and Information Engineering, Heilongjiang Institute of Science and Technology, Harbin 150029, China
Abstract:
According to the limitation that the conventional cubature Kalman filter (CKF) requires system and measurement noise to be uncorrelated, a novel CKF with correlative noises for nonlinear discrete time Gaussian systems is designed. A set of recursive filtering equations of CKF with correlative noises are derived based on Bayesian estimation rule, and the third-order spherical-radial cubature rule is utilized to approximate the postrior mean and covariance of the state. The proposed method can estimate the state as a conventional CKF is unavailable when the system and measurement noise are correlative Gaussian white noises, which expends the application of CKF. The effectiveness of the proposed method is verified by a numerical simulation example.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号