首页 | 本学科首页   官方微博 | 高级检索  
     

负关联规则挖掘算法研究
引用本文:朱玉全,杨鹤标. 负关联规则挖掘算法研究[J]. 应用科学学报, 2006, 24(4): 382-386
作者姓名:朱玉全  杨鹤标
作者单位:江苏大学计算机科学与通信工程学院, 江苏镇江 212013
基金项目:国家自然科学基金(60572112),江苏大学科研基金(04KJD001)资助项目
摘    要:典型的正关联规则仅考虑事务中所列举的项目.负关联规则不但要考虑事务中所包含的项目,还必须考虑事务中所不包含的项目,它包含了非常有价值的信息.然而,对于负关联规则挖掘的研究却很少,仅有的几种算法也存在一定的局限性.为此,文中提出了一种快速有效的负关联规则挖掘算法MNAR,并给出了一种基于二进制形式的支持数计算方法.理论和实验结果表明算法MNAR是有效和可行的.

关 键 词:数据挖掘  负关联规则  频繁项目集  
文章编号:0255-8297(2006)04-0382-05
收稿时间:2005-04-04
修稿时间:2005-04-042005-07-05

Data Mining Algorithm Based on Negative Association Rules
ZHU Yu-quan,YANG He-biao. Data Mining Algorithm Based on Negative Association Rules[J]. Journal of Applied Sciences, 2006, 24(4): 382-386
Authors:ZHU Yu-quan  YANG He-biao
Affiliation:School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract:Typical association rules consider only items enumerated in transactions,referred to as positive association rules.Negative association rules also consider the same items,but in addition,also consider negated items,i.e.,those absent in transactions.Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that complement each other.They are also convenient for associative classifiers,classifiers that build their classification model based on association rules.Indeed,data mining using such rules necessitates examination of an exponentially large search space.Despite their usefulness,very few algorithms for mine this information have been proposed to date.In this paper,a fast and efficient algorithm MNAR is presented to discover negative association rules.Meanwhile,a method for calculating the support of itemsets is proposed.Experiments show that the MNAR algorithm is effective and feasible.
Keywords:data mining  frequent itemsets  negative association rules
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号