首页 | 本学科首页   官方微博 | 高级检索  
     

CVE漏洞分类框架下的SVM学习模型构建
引用本文:彭华,莫礼平,唐赞玉. CVE漏洞分类框架下的SVM学习模型构建[J]. 吉首大学学报(自然科学版), 2013, 34(4): 62-66. DOI: 10.3969/j.issn.1007-2985.2013.03.014
作者姓名:彭华  莫礼平  唐赞玉
作者单位:(吉首大学信息科学与工程学院,湖南 吉首 416000)
基金项目:湖南省科技厅科技计划资助项目,湖南省教育厅一般科学研究资助项目
摘    要:在CVE漏洞分类框架中,构建了基于支持向量机的学习模型,实现了根据不同的分类特征对CVE进行分类.

关 键 词:支持向量机(SVM)  公共漏洞和暴露(CVE)  分类特征  分类准确性  

Construction of a SVM Learning Model in the Categorization Framework for CVE
PENG Hua , MO Li-ping , TANG Zan-yu. Construction of a SVM Learning Model in the Categorization Framework for CVE[J]. Journal of Jishou University(Natural Science Edition), 2013, 34(4): 62-66. DOI: 10.3969/j.issn.1007-2985.2013.03.014
Authors:PENG Hua    MO Li-ping    TANG Zan-yu
Affiliation:  (College of Information Science and Engineering,Jishou University,Jishou,416000,Hunan China)
Abstract:In the categorization framework for CVE,this paper designs and constructs a learning model based on SVM,so that it can categorize the CVE according to the different taxonomic features.In the process of constructing a learning model based on SVM,first of all,the training data is generated according to the different taxonomic features in the several vulnerability databases,then a data fusion and cleansing process are designed to eliminate the inconsistencies of data,and finally the n-fold cross-validation method is used to evaluate the effect of the model.The learning model has been verified to have better performance of CVE classification.
Keywords:support vector machine (SVM)   common vulnerabilities and exposures (CVE)   taxonomic feature  classification accuracy
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号