首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于简单遗传算法的K-Means改进算法
引用本文:尹鹏飞,张晓丹. 一种基于简单遗传算法的K-Means改进算法[J]. 吉首大学学报(自然科学版), 2009, 30(6): 43-45
作者姓名:尹鹏飞  张晓丹
作者单位:吉首大学教务处,湖南,吉首,416000;吉首大学数计学院,湖南,吉首,416000
摘    要:针对k-means算法对初始值敏感、易陷入局部极小值等缺点,结合遗传算法的思想,提出了一种基于遗传算法和k-means算法的混合聚类方法,为了测试该聚类算法的性能,用k-means 算法和改进的算法进行了1组实验,并对2种算法的聚类结果进行比较,实验结果表明算法能够有效地解决聚类问题.

关 键 词:数据挖掘  聚类分析  遗传算法K-means算法

Improved K-Means Algorithm Based on a Simple Genetic Algorithm
YIN Peng-fei,ZHANG Xiao-dan. Improved K-Means Algorithm Based on a Simple Genetic Algorithm[J]. Journal of Jishou University(Natural Science Edition), 2009, 30(6): 43-45
Authors:YIN Peng-fei  ZHANG Xiao-dan
Affiliation:(1.Office of Education Administration,Jishou University,Jishou 416000,Hunan China;2.College of Mathematics and Computer Science,Jishou University,Jishou 416000,Hunan China)
Abstract:K-means algorithm is sensitive to initial value,easy to fall into local minimum value.In response to these shortcomings,the idea of genetic algorithm is proposed based on genetic algorithm and k-means algorithm for hybrid clustering method.In order to test the performance of clustering algorithm,a set of experiments are conducted by using k-means algorithm and the improved algorithm,and the clustering results by the two algorithms are compared.It is showed that the clustering algorithm can effectively solve the clustering problem.
Keywords:data mining  cluster analysis  genetic algorithm  k-means algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号