Influence of nano-Al2O3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites |
| |
Authors: | Xiang Zhao Lei-chen Guo Long Zhang Ting-ting Jia Cun-guang Chen Jun-jie Hao Hui-ping Shao Zhi-meng Guo Ji Luo Jun-bin Sun |
| |
Affiliation: | 1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;2. School of Engineering Technology, Purdue University, West Lafayete, Indiana, 47907-2021, USA;3. Health Policy and Research Department, Weil Cornel Medical Colege, New York, NY, 10031, USA |
| |
Abstract: | The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%–50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with en-ergy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body. |
| |
Keywords: | metal matrix composites oxide dispersion strengthening copper nanoparticles microstructure mechanical properties tri-bological properties |
本文献已被 万方数据 SpringerLink 等数据库收录! |
| 点击此处可从《矿物冶金与材料学报》浏览原始摘要信息 |
|
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文 |
|