Microstructure characteristics of Ni/WC composite cladding coatings |
| |
Authors: | Gui-rong Yang Chao-peng Huang Wen-ming Song Jian Li Jin-jun Lu Ying Ma Yuan Hao |
| |
Affiliation: | 1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;2. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;Lanzhou Petroleum Machinery Institute, Lanzhou 730000, China;3. Wuhan Research Institute of Materials Protection, Wuhan 430030, China;4. College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China |
| |
Abstract: | A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones. |
| |
Keywords: | cladding composite coatings microstructure characteristics formation mechanisms hardness |
本文献已被 万方数据 SpringerLink 等数据库收录! |
| 点击此处可从《矿物冶金与材料学报》浏览原始摘要信息 |
|
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文 |
|