首页 | 本学科首页   官方微博 | 高级检索  
     

基于ARM+FPGA异构平台的目标检测加速模块设计与实现
引用本文:李放,曹健,李普,谢豪,赵雄波,王源,张兴. 基于ARM+FPGA异构平台的目标检测加速模块设计与实现[J]. 北京大学学报(自然科学版), 2022, 58(6): 1035-1041. DOI: 10.13209/j.0479-8023.2022.089
作者姓名:李放  曹健  李普  谢豪  赵雄波  王源  张兴
作者单位:1. 北京大学软件与微电子学院, 北京 1026002. 北京航天自动控制研究所, 北京 1000703. 北京大学集成电路学院, 北京 100871
基金项目:国家重点研发计划项目(2018YFE0203801)资助
摘    要:为解决基于深度学习目标检测模型规模大、在边缘设备上难以部署的问题, 以YOLO目标检测模型为例, 设计实现基于ARM+FPGA异构平台的目标检测加速模块。该系统使用剪枝、量化后的压缩模型, 在FPGA实现神经网络前向推理加速, 在ARM中实现加速器调度。实验结果表明, 部署至Xilinx ZCU102开发板上, 该模块在200 MHz工作频率下, 平均计算性能达到425.8 GOP/s, 推理压缩模型速度达到30.3 fps, 模块功耗为3.56 W, 证明该加速模块具备可配置性。

关 键 词:深度学习  目标检测  模型剪枝量化  异构平台  边缘计算  
收稿时间:2021-12-20

Design and Implementation of Object Detection Acceleration ModuleBased on an ARM+FPGA Heterogeneous Platform
LI Fang,CAO Jian,LI Pu,XIE Hao,ZHAO Xiongbo,WANG Yuan,ZHANG Xing. Design and Implementation of Object Detection Acceleration ModuleBased on an ARM+FPGA Heterogeneous Platform[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(6): 1035-1041. DOI: 10.13209/j.0479-8023.2022.089
Authors:LI Fang  CAO Jian  LI Pu  XIE Hao  ZHAO Xiongbo  WANG Yuan  ZHANG Xing
Affiliation:1. School of Software & Microelectronics, Peking University, Beijing 1026002. Beijing Aerospace Automatic Control Institute, Beijing 1000703. School of Integrated Circuits, Peking University, Beijing 100871
Abstract:Object detection algorithms based on deep learning use big models are difficult to be deployed at the edge. Taking YOLO (you only look once) object detection algorithm as an example, an acceleration module based on an ARM+FPGA heterogeneous platform is proposed. The FPGA chip accelerates the forward process of the compressed model while ARM is responsible for process scheduling. Experiment results show that the peak performance of the system reaches 425.8 GOP/s under 200 MHz working frequency. The system on a Xilinx ZCU102 board achieves a frame rate at 30.3 fps, while the power consumption is 3.56 W. It is also configurable.
Keywords:deep learning  object detection  model pruning and quantization  heterogeneous platform  edge computing
  
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号